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Abstract 
 
Recently, our research group has synthesized a new class of monoanionic tridentate ligands, 

ToR (ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate and ToP = tris(4-S-isopropyl-2-

oxazolinyl)phenylborate), and developed the corresponding stoichiometric and catalytic 

chemistry of zirconium, yttrium, rhodium, iridium, and magnesium complexes. This thesis 

begins with the comparison of this new class of scorpionate-type ligands (ToM and ToP) with 

more classical Tp (tris(pyrazolyl)borates) and Cp (cyclopentadienyl) analogues, both in terms 

of relative electron donating ability as well as steric bulk. Group 7 metal tricarbonyl 

complexes of ToM and ToP (ToMM(CO)3 and ToPMC(O)3; M = Re, Mn) were synthesized in 

this purpose and the corresponding νCO IR stretching frequency data were used for the 

electron donating ability comparison. Solid angles of these ancillary ligands were calculated 

using coordinates from crystal structures or molecular models with the program Solid-G to 

obtain a quantitative assessment of the relative steric properties. The thesis then mainly 

focuses on the chemistry of four-coordiante zinc complexes using ToM as the supportive 

ancillary ligand. The main interest lies on the synthesis of molecular terminal zinc hydride 

and its catalytic activity in Si−O bond formation reactions, as well as the isolation and 

reactivity study of alkylperoxy zinc compounds (ToMZnOOR) obtained from the reactions of 

the corresponding zinc alkyls (ToMZnR) with molecular O2. The later part of this thesis also 

discusses the chemistry of ToM-supported magnesium complexes and the comparison with 

analogous zinc complexes. It starts with the synthesis of ToM-supported zinc and magnesium 

bulky silyl complexes, both comprising with and without β-SiH moieties (ToMM−SiR3; M = 
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Zn, Mg; R = SiHMe2, SiMe3). The study further extends to divergent reaction pathways of 

ToMMSi(SiHMe2)3 (M = Zn, Mg) towards CO2. Finally, the thesis discusses the catalytic 

activity of ToMZnH and ToMMgMe in carbonyl reduction. ToMMgMe mediated catalytic 

Tischenko coupling of aldehydes, reversible trans-esterification, and reductive ester cleavage 

are also discussed in details. 
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Chapter 1: Introduction 

 

General introduction. 

 
Zinc, as a metal, is blessed with several interesting features that include its flexible 

coordination geometry, fast ligand exchange, lewis acidity, intermediate polarizability (hard-

soft character), cheap abundance, strong binding to suitable sites, and its lack of redox 

activity. It is the combination of these factors that makes zinc an attractive metal system in 

synthetic organometallic chemistry.1 Organozinc complexes have a long-standing history of 

being extensively used in both organic and organometallic syntheses, especially as alkyl, aryl, 

silyl and hydride transfer agents that complement organolithium and organomagnesium 

reagents.2 In particular, combination of zinc and alkali and/or alkaline earth metals often 

offer valuable alternatives to the corresponding magnesium and lithium reagents in terms of 

controlling both reactivity as well as selectivity as exemplified in eqn. 1 and 2.3 
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            From biological standpoint, zinc is the second-most abundant metal in biology after 

iron and resides as the active sites of more than 300 enzymes, covering all six classes. Zinc 

binding sites in proteins are often distorted tetrahedral or trigonal bipyramidal, made up of 

sulphur or nitrogen or oxygen donor ligand environment. Therefore, mimicking the 

biologically active sites using synthetic molecular complexes containing N,O,S- donor 

ligands is often attempted to better understand the physiological processes. As for example, 

Parkin and coworkers modeled the catalytic activity of Liver Alcohol Dehydrogenase using 

tris(pyrazolyl)borato zinc alkoxides and hydroxides as shown in eqn. 3.4 

 

          Our group has recently developed a new oxazoline-based monoanionic scorpionate 

ligands tris(4,4-dimethyl-2-oxazolinyl)phenylborate [ToM] and developed the corresponding 

stoichiometric and catalytic chemistry of zirconium,5 yttrium,6 rhodium,7 iridium,8 

aluminium,9 and magnesium10 complexes. The ToM ligand shares a close resemblance with 

the well known tris(3,5-dimethylpyrazolyl)borate [Tp*] ligand in terms of appearance, 

electron donating ability as well as steric bulkiness. But the three-dimensional orientation of 

the ToM ligand in space is quite different (as revealed from solid angle calculation; chapter 2) 

from that of Tp*. This interesting feature is advantageous in favor of ToM when it comes to 

the availability of free space on zinc and hence the reactivity. As for example, Parkin and 

coworkers reported that Tp*ZnMe [Tp*: cone angle 224°; solid angle 7.1 steridians (57%)] 

reacts with methyl iodide to undergo unwanted ligand redistribution, providing (κ3-Tp*)2Zn 

N
BH
NN N

N

N
Zn OH

N
BH
NN N

N

N
Zn OEt

N
BH
NN N

N

N
Zn OCH2

C6H4NO2

O

Ar HEtOH

Ar = C6H4NO2

(3) 
	  



www.manaraa.com

	   3	  

as shown in eqn. 4.11a 

 

             The bulkier TptBu, having a much higher cone angle (244°) and solid angle (8.9 

steridians (71%)], can prevent ligand redistribution and provides the corresponding TptBuZnI 

as shown in eqn. 5.11b However, the bulky TptBu leaves only a little free space around zinc, 

which makes it less reactive.  

 

       However, ToMZnMe (ToM: cone angle 213°; solid angle 7.6 steridians (61%)], despite 

being similar to the Tp*, does not undergo ligand redistribution but provides ToMZnI (eqn.6). 

ToMZnI has been fully characterized including X-ray structure (Fig.-S1). 
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          This indicates that the unique spatial orientation of ToM not only allows preventing 

ligand redistribution and provides stabilization the metal center but also keeps enough space 

to show reactivity like protonation, insertion, metathesis etc. (as discussed in the following 

chapters). The most striking example of this feature is discussed in chapter 5 where ToMZnR 

(R = Et, n-Pr, i-Pr, t-Bu) alkyls are found to react with O2 providing isolable monomeric zinc 

alkyl peroxides, whereas, the corresponding TptBuZnR complexes are inert to O2 (Fig.-1). 

 

         

 

BPh
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O N
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O N
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(Fig.-1) 
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Additionally, zinc hydrides are usually proposed as the catalytic active species or important 

intermediates in several zinc mediated group transfer reactions. As for example, zinc 

catalyzed hydrosilylation of carbonyls (eqn. 7) is proposed to involve zinc hydride as the 

reactive species.12 

  

          

 

 

 

However, only a few isolable monomeric zinc hydrides are reported in the literature13 (Fig.-

2) and their application in studying catalysis is little known.14  
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In this regard, ToM-coordinated zinc system has an enormous potential in studying catalysis, 

as individual stoichiometric steps could be probed and unique steric feature can facilitate 

isolation of reactive intermediates. The following chapters discuss our initial exploration of 

the stoichiometric and catalytic chemistry of ToM-ligand supported zinc complexes. 

      Similarly, our group has only recently started exploring the catalytic chemistry of 

ToMMgMe in intramolecular hydroamination/cyclization of aminoalkenes10a and Si−N bond 

formation reactions via dehydrogenative coupling between amines and silanes.10b This thesis 

also discusses the continuation of the research on other potential catalytic applications of 

ToMMgMe in several important organic transformations. 
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Figure S1. ORTEP diagram of ToMZnI with ellipsoids drawn at 50% probability. Hydrogen 
atoms are not included to enhance the clarity of heavy atom positions. 

 

Thesis organization. 

The thesis contains nine chapters. Chapter 1 gives a brief general introduction of the topic. 

Chapters 2 through 6 are published journal articles, which are slightly modified to have a 

coherent description. The chemistry discussed in chapter 7 and 8 are yet not published and 

the manuscripts for each are in progress. The thesis ends in Chapter 9 with a general 

conclusion.  

         Chapter 2 describes the synthesis of tris(oxazolinyl)phenyl borato group 7 metal 

tricarbonyl complexes (ToMM(CO)3 and ToPM(CO)3; M = Re and Mn). The νCO IR 

frequencies of these complexes were used to compare the relative donor strength of this new 

class of scorpionates with the classical hydridotris(pyrazolyl)borate (Tp) and 
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cyclopentadienyl (Cp) ligands. Solid angles of all these ancillary ligands (L) were also 

calculated from the X-ray crystal structures of the corresponding group 7 metal (Re and Mn) 

tricarbonyl complexes to obtain a relative trend in the steric bulk. 

           Chapter 3 discusses the synthesis of four-coordinated tris(4,4-ditheyl-2-

oxazolinyl)phenyl borato (ToM) zinc complexes with special importance on terminal hydride 

(ToMZnH). An unusal β-elimination from a coordinatively saturated zinc center, mediated by 

LiCl, is highlighted in this chapter. 

            Chapter 4 demonstrates the catalytic activity of ToMZnH in Si−O bond formation 

reaction via dehydrogenative cross coupling between alcohols and hydrosilanes. A detailed 

mechanistic study was conducted to establish the empirical rate law for the reation between 

3,5-C6H3Me2OH and PhMeSiH2, which indicates that Si–O bond formation is turnover-

limiting in the presence of excess phenol. Richard Thompson, a former undergraduate 

student of our group, had worked with me in this project and performed some of the NMR-

scale reactions and assisted in kinetic plots.   

            Chapter 5 describes the synthesis of a series of zinc alkyl compounds of the type 

ToMZnR (ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate; R = Et, n-C3H7, i-C3H7, t-Bu, 

CH2Ph, Ph) some of which react with O2 at 25 °C to form isolable monomeric alkylperoxides 

ToMZnOOR (R = Et, n-C3H7, i-C3H7, t-Bu) in quantitative yield. However, ToMZnMe and 

ToMZnH are inert towards O2. Detailed mechanistic study using 1H NMR spectroscopy for 

the O2 insertion into the Zn−C bond of ToMZnEt provided the empirical rate law that is 

consistent with a radical chain mechanism, where the rate-limiting SH2 step involves the 

interaction of •OOEt and ToMZnEt. Monomeric ToMZnOOR compounds are thermally 
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resilient upto 120 °C. Yet, they show divergent reactivity towards phosphines (oxidation via 

O-atom transfer) and hydrosilanes (−OOR group transfer affording ToMZnH and 

alkylperxoysilanes). 

         Chapter 6 deals with the synthesis of ToM-ligand supported zinc and magnesium bulky 

silyl complexes, both comprising with and without β-SiH moieties (ToMM−SiR3; M = Zn, 

Mg; R = SiHMe2, SiMe3). The reactivity difference between ToMZnSi(SiHMe2)3 and 

ToMMgSi(SiHMe2)3 towards CO2 was further probed in details. This piece of work was 

conducted in collaboration with Nicole L. Lampland from our group. The silyl ligand 

precursors, KSi(SiHMe2)3 and KSi(SiMe3)3, were first synthesized by Kaking Yan from our 

group, whereas James F. Dunne, a former graduate student, had first observed the formation 

of ToMMgOMe species in NMR-scale reaction between ToMMgMe and MeOH, mentioned in 

this chapter. Contributions from these authors were not removed to keep the cohesiveness of 

the discussion intact, rather mentioned in details at the beginning of the chapter. 

         Chapter 7 discusses the catalytic activity of ToMZnH in hydrosilylation and 

hydroboration of aldehydes and ketones. Carbonyl substrates with a wide range of functional 

groups were tested for the reduction with BnMe2SiH and HBpin (pinacolborane). Detailed 

kinetic study to probe the mechanism for the hydrosilylation of PhHCO with BnMe2SiH is 

currently underway and the primary results show an inhibition effect from PhCHO on the 

overall reaction rate, which is explained based on an observed adduct formation between zinc 

alkoxide (ToMZnOCH2Ph) and free PhHCO. Individual steps involved in the catalytic cycle 

are also being studied in details and important intermediates have been isolated. 
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         Chapter 8 describes similar catalytic hydroboration reduction of aldehydes and ketones 

mediated by ToMMgMe as the pre-catalyst and HBpin as the reductant. Similar functional 

group tolerance was envisaged as mentioned in chapter 7 for ToMZnH catalyzed 

hydroboration. Additionally, catalytic activity of ToMMgMe in hydroboration mediated ester 

cleavage was also explored using HBpin again as the reductant. Furthermore, ToMMgMe was 

also established as an active pre-catalyst for Tishchenko coupling of aldehydes as well 

reversible trans-esterification reactions. Detailed kinetic study to probe the mechanism for 

the ester cleavage is currently underway. Individual steps involved in the catalytic cycle are 

also being studied in details by approaching stoichiometric reactions and important 

intermediates have been isolated and characterized. A monomeric magnesium borohydride 

species, ToMMgH2Bpin, has been isolated and structurally characterized, which is a rare 

example of its kind. Chapter is general conclusion about the thesis. 

Dr. Arkady Ellern, the crystallographer in the instrumentation services, had collected the X-

ray data and solved the structures of all the compounds mentioned in this thesis. 
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Chapter 2: Synthesis of New Mn and Re Tricarbonyl Complexes of 
Tris(oxazolinyl)phenyl borate Ligands: Comparison to Analogous Tris(pyrazolyl) 
borate Complexes	  
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Abstract  

M(CO)3 (M = Mn, Re) complexes of two tris(oxazolinyl)phenylborate ligands (ToM and ToP) 

have been prepared and characterized by spectroscopic and crystallographic methods. The 

steric bulk imparted by the sp3-hybridized carbons in the oxazoline ring give the 

tris(oxazolinyl)borate ligands significant structural protection against dimerization while 

leaving the M(CO)3 face open for possible reactivity. Comparison of the νCO IR frequencies 

of these complexes gave a sequence of donor strength, Cp*, ToM, ToP > Tp* > Tp > Cp. Solid 

angles of these anciliary ligands (L) were also calculated from the X-ray crystal structures of 

LM(CO)3 (M = Re, Mn) complexes which provide the trend in steric bulk for the ancillary 

ligands as Cp < Cp* < Tp < Tp* < ToP < ToM. 
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Introduction.  

        There has been a steady interest in developing mimics of the cyclopentadienyl (Cp) 

ligand as a monoanionic formal six- electron donor. Among the most broadly investigated 

analogues are the hydridotris(pyrazolyl)borate (Tp) ligands, which differ from the Cp ligand 

in terms of steric constraints and metal–ligand bonding.1 A number of papers have compared 

the stoichiometric and catalytic reactivities of metal complexes derived from these two 

classes of ligands.2 Quite recently, our group introduced a new type of scorpionate ligand, 

tris(oxazolinyl)phenyl borate, which contains three oxazoline donor groups in place of the 

pyrazolyl groups of the Tp ligand class.3 The oxazoline moiety provides access to chiral 

structures, and the substitution of B–C for B–N linkages limits the Lewis acid-mediated 

ligand epimerizations that complicate the chemistry of metal–Tp complexes.4 

Owing to the fact that ligand electronic properties are important in determining the reactivity 

of metal complexes, effort has been made to characterize the relative donor properties of Cp- 

vs. scorpionate-type ligands. The most comprehensive of these studies is the compilation by 

Tellers et al. of the donor-related physical parameters published prior to 2000.5 Based largely 

on IR and electrochemical data, these authors discouraged generalizations about the relative 

donating abilities of the two types of ligands. Previous studies on the donor ability of 

oxazolines have focused on photoelectron spectroscopy and ab initio calculation of 

uncoordinated groups, and few comparisons to ligands such as cyclopentadienyl are 

available.6,7 We were interested in assessing the electron donating ability of our newly 

synthesized scorpionate [tris(oxazolinyl)phenyl borate] ligands in comparison with more 

classical cyclopentadienyl and hydridotris(pyrazolyl)borates using group VII M(CO)3 

complexes (M = Mn, Re). In this context νCO IR stretching bands of the new 



www.manaraa.com

	   14	  

tris(oxazolinyl)phenyl borato rhenium and manganese tricarbonyl complexes were measured 

under the identical conditions (both solid-state as well as CH2Cl2 solution) as reported for the 

CpM(CO)3, TpM(CO)3, and Tp*M(CO)3 complexes (M = Re, Mn) in the literature. 

The structures and numerical ordering of the compounds described in this paper are shown in 

Scheme 1. The acronym ToM is used for the tris(4,4-dimethyl-2-oxazolinyl)phenyl borate 

ligand and ToP is employed for the tris(4S-isopropyl-2- oxazolinyl)phenyl borate ligand. 

Scheme 1 
	  

	  	  	  	  	  	  	   	  	  	  	  	  	   	  
M=Re, R=H: ReTp(CO)3 (1)      M=Re, R=Me: ReToM(CO)3 (5)      M=Re, R=H: ReCp(CO)3 (9) 

M=Re, R=Me: Re Tp*(CO)3 (2)   M=Re, R,R=iPr,H: ReToP(CO)3 (6)    M=Re, R=Me: Re Cp*(CO)3 (10) 

M=Mn, R=H: MnTp(CO)3 (3)    M=Mn, R=Me: MnToM(CO)3 (7)      M=Mn, R=H: MnCp(CO)3 (11) 

M=Mn, R=Me: Mn Tp*(CO)3 (4)  M=Mn, R,R=iPr,H: MnToP (CO)3 (8)   M=Mn, R=Me: MnCp*(CO)3 (12) 

 
Results and Discussion. 
 
Synthesis and characterization of tris(oxazolinyl)borate compounds 

     Group 7 tris(oxazolinyl)borate compounds MToM(CO)3 [M = Re (5), Mn (7)] were 

prepared by adaptation of the salt metathesis route that provides MTp(CO)3 (M = Mn, Re). 

Thus, Li[ToM] and MBr(CO)5 (M = Mn, Re) were reacted in THF or acetonitrile at 80 °C to 

afford MToM(CO)3 in good yield (Eq 1).  
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    These compounds were fully characterized by spectroscopic, analytical, and single crystal 

X-ray diffraction methods. The spectroscopic data for all the new compounds reported in this 

chapter are summarized in Table 1.  

Table 1. Summary of the characteristic data for tris(oxazolinyl)phenylboratorhenium and 
manganese tricarbonyl complexes. 
 

Compound νCO (KBr, cm-1) 
νCO (solvent, 

cm-1) 
νCN (KBr, cm-1) 

15N NMR 

(ppm) 

ReToM(CO)3, 

5 

2012, 1892 

 

2013, 1894 

(THF) 

2019, 1898 

(CH2Cl2) 

1582 cm-1 -176.8 

ReToP(CO)3, 

6 

2010, 1892 

 

2012, 1896 

(THF) 

2014, 1897 

(CH2Cl2) 

1589 cm-1 -195.6 

MnToM(CO)3, 

7 

2018, 1899 

 

2017, 1902 

(THF) 

2020, 1912 

(CH2Cl2) 

1592 cm-1 -172.1 

MnToP(CO)3, 

8 

2016, 1961 

 

2017, 1908 

(THF) 
1601 cm-1 not detected 

H[ToP] n.a. n.a. 1601 cm-1 -195.6 

BPh
N

O

Li

O
N

O

N
+ M(CO)5Br

THF or CH3CN
80 °C

- LiBr, - 2 CO

BPh
N

O

M

O
N

O

N CO

CO

CO

M = Re : 12 h, 90%
M = Mn : 8 h, 89%LiToM MToM(CO)3

(1)
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(broad) 

K[ToP] n.a. n.a. 1601 cm-1 -149.1 

 

We briefly describe the general features of ReToM(CO)3, as that compound and MnToM(CO)3 

are structurally and spectroscopically similar. The 1H NMR spectrum of ReToM(CO)3 (5) in 

benzene-d6 contained singlet resonances for the methyl and methylene groups of the 

oxazoline moiety and three downfield multiplets corresponding to the phenyl group. The 

equivalence of the oxazoline rings indicates a κ3-N,N,N-coordination of the ToM ligand, 

consistent with a C3v-symmetric structure. Likewise, the 13C spectrum of 5 contained a single 

set of oxazoline resonances and a single carbonyl resonance at 128.06 ppm. Crosspeaks 

between the oxazoline nitrogen and the ring methyl and methylene groups in a 1H-15N 

HMBC experiment (performed at natural 15N abundance) provided a characteristic 15N NMR 

chemical shift of −176.8 ppm for 5. This chemical shift is in the range of other late transition-

metal complexes containing the ToM ligand and downfield from 2H-dimethyl-2-oxazoline 

(−127.9 ppm). 

One νCN band at 1582 cm-1 was observed in the solid-state infrared spectrum (KBr) of 

ReToM(CO)3, which further supports the κ3-coordination. The solid-state IR spectrum of 

ReToM(CO)3 also contains one sharp band and one broad absorption (2012 and 1892 cm−1), 

corresponding to the symmetric and anti-symmetric carbonyl modes. These bands shift to 

slightly higher energy in the solution-phase spectrum acquired in THF (2013 and 1894 cm−1) 

or dichloromethane (2019 and 1898 cm−1). 
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X-ray quality single crystals of 5 and 7 were obtained from a concentrated toluene 

solution cooled to − 30 °C. The solution to the single crystal X-ray diffraction study confirms 

the identity of ReToM(CO)3 and reveals the tridentate fac-N,N,N-ToM coordination and also 

the presence of three carbonyl ligands (Figure 1). The relatively large rhenium(I) center and 

the steric and chelating properties of the ToM ligand result in small N-Re-N angles (80.6(3) to 

85.4(3)°). The carbonyl ligands are also slightly compressed, with C-Re-C angles less than 

90° (from 86.1(5) to 87.2(5)°), away from the bulky ToM ligand. Compounds 5 and 7 form a 

fine isomorphous pair. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 ORTEP diagram of 5. Ellipsoids are drawn at 50% probability, and hydrogen and a 

disordered toluene (about an inversion center) are omitted for clarity. Compound 7 is 
isomorphous with 5. 

 
      Reaction of optically active Li[ToP] [ToP = tris(4S-isopropyl-2-oxazolinyl)phenyl borate] 

and MBr(CO)5 (M = Re, Mn) in THF at 80 °C gave MToP(CO)3 which were contaminated 

with unidentified impurities. Unfortunately, recrystallization of the crude material in toluene 

at − 30 °C was not effective for purification. We had previously found that the potassium salt 
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K[ToM] reacts under milder conditions than Li[ToM] as an effective [ToM]-transfer agent. 

Therefore, K[ToP] was synthesized from Li[ToP] via HToP according to eqn (2). A reaction 

between Li[ToP] and [HEt3N]Cl in methylene chloride, followed by a filtration through a 

plug of neutral alumina, provided anhydrous HToP in 54% yield as a light yellow gel. 	  

	  

HToP was characterized by 1H, 11B, 13C{1H}, and 15N NMR spectroscopy, IR, and high-

resolution mass spectrometry. In particular, the 1H NMR spectrum of HToP in benzene-d6 

shows the presence of a single diastereomer as the S,S,S enantiomer and a high-resolution 

mass spectrum producing the parent ion peak at 426.3. HToP reacts upon treatment with KH 

in THF at 25 °C to provide K[ToP] as a light yellow solid along with hydrogen gas evolution. 

      Although we were unable to grow X-ray quality single crystals for K[ToP], the other solid 

as well as solution phase spectroscopic data (1H, 11B, 13C, 15N NMR and IR) were indicative 

of the presence of an optically active ToP pro-ligand. In particular, the diastereotopic methyl 

resonances from the isopropyl group indicate the presence of a stereo- center, and the 

solution NMR data (1H, 13C, 11B, 1H–15N HMBC) indicated a pseudo-C3-symmetric 

geometry of the ToP-ligand, thus making all the three oxazoline rings equivalent. Thus, only 

one diastereomer (containing three identical stereocenters) is present. In the solid-state IR 

spectrum a sharp single band for the oxazoline C=N stretching at 1601 cm−1 indicates that 

KToP has similar geometry as the LiToP. As mentioned earlier, individual salt metathesis 

+ [HNEt3]Cl BPh
N

O

K

O
N

O

N
LiToP (2)

25 °C, 8 h
- LiCl, - NEt3

53.5%

CH2Cl2 HToP KH
25 °C, 8 h

- H2

93.9% KToP
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reactions of K[ToP] with Re(CO)5Br and Mn(CO)5Br in THF at 80 °C afforded ReToP(CO)3 

(6) and MnToP(CO)3 (8), respectively, in 85% and 87% isolated yields (eqn (3)). As 

discussed for ReToM(CO)3, both 6 and 8 were characterized by crystallography and 

spectroscopy (Table 1). 

 

	  

	  
	  

 

 

 

 

X-Ray quality crystals were obtained for compounds 6 and 8, and their structures reported 

here are the first containing the chiral ToP ligand. The X-ray crystal structures for these two 

compounds are isomorphous. The value of the Flack parameter, 6 = 0.010(6) and 8 = 

0.005(9), establishes the absolute configuration of the structure as S, and this configuration is 

expected from our use of L-valine to prepare 4S-isopropyl-2- oxazoline. These structural 

studies provide valuable information about the steric properties of the chiral ToP ligand as 

well as the conformation favored in the solid state. The two MToP(CO)3 complexes have very 

similar structures, and the ORTEP diagram of 6 is shown in Fig. 2 (see ESIz for the X-ray 

structure of 8). Significantly, in both 6 and 8, the isopropyl groups are oriented so that the 

methine CH, rather than a methyl group, on each oxazoline is directed toward the Re(CO)3 

moiety. This conformation appears to minimize unfavorable inter-ligand interactions.	  

+ M(CO)5Br
THF or CH3CN

80 °C
- LiBr, - 2 CO

BPh
N

O

M

O
N

O

N CO

CO

CO

M = Re : 12 h, 85%
M = Mn : 6 h, 87%

KToP

MToP(CO)3

(3)
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Figure 2. ORTEP diagram of ReToP(CO)3 (6). Hydrogen atoms on the methine carbons are 
shown to illustrate the S absolute configuration and isopropyl conformation for the 
oxazolines; all other hydrogen atoms and two co-crystallized toluene molecules are not 
included in the plot. A similar structure was observed for 8. 

 

Comparison of ligand donor strength of ToM, ToP, Tp, Tp*, Cp and Cp* ligands  

       

 In terms of the IR data, ligand (L) donor properties have traditionally been ranked by the 

νCO frequencies of ML(CO) complexes, with decreasing stretching frequencies being 

interpreted as  increasing L donor strength.4, 8 Here we have complied the νCO stretching 

frequency data (table 2) of the rhenium and manganese tricarbonyl complexes in CH2Cl2 to 

asses the relative donor ability of this new class of scorpionate compared to Cp and Tp-

derivatives. 
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 Table 2. νCO stretching frequency data of group 7 metal (Re, Mn) tricarbonyls. 

Compounds νCO,sym (cm−1) νCO,asym (cm−1) 
Avg νCO,sym (cm−1) = 

(νCO,sym + 2 νCO,asym)/3 

ReTp(CO)3 2026 1912 1950 

Re Tp*(CO)3 2018 1903 1941 

ReCp(CO)3 2024 1926 1959 

Re Cp*(CO)3 2005 1906 1939 

ReToM(CO)3 2019 1898 1938 

ReToP(CO)3 2014 1897 1936 

MnTp(CO)3 2035 1932 1966 

Mn Tp*(CO)3 2027 1922 1957 

MnCp(CO)3 2022 1934 1963 

Mn Cp*(CO)3 2004 1917 1946 

MnToM(CO)3 2020 1912 1948 

 

Based on the νCO frequencies listed in Table 4, the scorpionate and Cp-like donor 

properties fall in the sequence Cp*, ToM, ToP > Tp* > Tp, Cp for the Mn complexes. In this 

ranking, we make no distinction between the averaged frequencies if they are the same 

within roughly the resolution of the IR measurement (4 cm−1). For the Re complexes, the 

sequence is essentially the same: Cp*, ToM, ToP > Tp* > Tp > Cp. This analysis follows 

almost exactly the earlier trends summarized by Tellers et al.5 for Tp- and Cp-type complexes 



www.manaraa.com

	   22	  

and suggests that the tris (oxazolinyl)phenylborate ligands have an increased donor strength 

compared to Tp*. 

 

Comparison of steric properties of ToM, ToP, Tp, Tp*, Cp and Cp* ligands in Re(CO)3 

complexes 

      A qualitative comparison of the steric properties of tris(oxazolinyl)borate and 

tris(pyrazolyl)borate ligands was obtained from Newman projections of the structures along 

their C3 axis (Fig. 3). The steric bulk of the planar pyrazole groups in the Tp* ligand is 

projected in the plane of the aromatic ring, leaving three large wedges of open space between 

the donor groups. In contrast, the non-planar oxazoline groups in ToM and ToP give a 

significantly different shape. The 4,4-dimethyl groups on ToM create a bowl-like hemi-sphere 

of steric bulk around the –Re(CO)3 moiety. In ToP, the steric bulk creates a windmill-like 

shape that blocks only one side of each carbonyl ligand. 

          

Figure 3. ORTEP diagrams of ReTp*(CO)3,13 ReToM(CO)3, and ReToP(CO)3 molecules 

viewed along the C3-axis.  

 

Solid angles provide a quantitative assessment of steric properties of a ligand,9 and may be 

calculated conveniently using coordinates from crystal structures or molecular models with 
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the program Solid-G.10 A solid angle is defined as the surface area of a projection of a ligand 

on a sphere surrounding a complex, and this approach for quantifying steric properties 

accounts for a ligand’s shape.  

       Crystal structures have been reported for ReCp(CO)3,11 ReCp*(CO)3,12 ReTp(CO)3, and 

ReTp*(CO)3,13 as well as the corresponding manganese complexes. Those structures 

provided the coordinates to calculate solid angles for Cp, Cp*, Tp, and Tp* ligands (Table 3) 

in steradians. The crystal structures of ToM and ToP compounds reported here also were used 

to calculate solid angles. The second parameter given is the percent of a sphere’s surface area 

that is taken up by the ligand’s two-dimensional projection (maximized at 100% for a ligand 

that entirely surrounds a metal center). 

Table 3. Solid angles for tris(oxazolinyl)phenyl borates, tris(pyrazolyl)borates, and 
cyclopentadienyls in rhenium tricarbonyl complexes. 

 

Compound Solid angle (steradians) Percent of sphere 
occupied 

ReToM(CO)3, 5 6.88 54.7 
ReToP(CO)3, 6 6.61 52.6 
Re Tp*(CO)3, 2 6.49 51.6 
ReTp(CO)3, 1 5.26 41.8 

ReCp*(CO)3,10 4.72 37.6 
ReCp(CO)3, 9 4.20 33.4 

 

Comparison of the solid angles calculated for rhenium compounds provides the trend in 

steric bulk for the ancillary ligands: Cp < Cp* < Tp < Tp* < ToP < ToM, and the same trend is 

obtained for the manganese complexes. Notably, the tris(oxazolinyl)borate ligands occupy 

greater than a hemi-sphere around the rhenium center, and thus limit possible dimerization or 

ligand redistribution processes. 
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Conclusion. 

        This estimation of relative donor strength and three-dimensional orientation of this new 

class of scorpionate-type ligands around the group 7 metal centers (Re and Mn) will help us 

to asses and control the reactivity of ToM and ToP-metal complexes in future. 
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Experimental 

General. All reactions were performed under a dry argon atmosphere using standard Schlenk 

techniques or under a nitrogen atmosphere in a glovebox, unless otherwise indicated. Water 

and oxygen were removed from benzene, toluene, pentane, acetonitrile, diethyl ether, and 

tetrahydrofuran solvents using an IT PureSolv system. Benzene-d6 and tetrahydrofuran-d8 

were heated to reflux over Na/K alloy and vacuum-transferred. Re(CO)5Br and Mn(CO)5Br 

were prepared according to the literature procedure,1 starting from Re2(CO)10 and Mn2(CO)10 

respectively. Re(CO)5Br was further purified by sublimation. Mn(CO)5Br was used without 

further sublimation. Li[ToM]2 and Li[ToP]3 were prepared by literature procedures. 15N 

chemical shifts were determined by 1H-15N HMBC experiments on a Bruker Avance II 700 

spectrometer with a Bruker Z-gradient inverse TXI 1H/13C/15N 5 mm cryoprobe; 15N 

chemical shifts were originally referenced to liquid NH3 and recalculated to the CH3NO2 

chemical shift scale by adding -381.9 ppm. 11B NMR spectra were referenced to an external 

sample of BF3
.Et2O. Elemental analyses were performed using a Perkin-Elmer 2400 Series II 
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CHN/S by the Iowa State Chemical Instrumentation Facility. X-ray diffraction data was 

collected on a Bruker-AXS SMART or APEX II as described below.  

ReToM(CO)3 (5). A solution of LiToM (0.419 g, 1.08 mmol) in THF (20 mL) was added to 

Re(CO)5Br (0.439 g, 1.08 mmol) suspended in THF (5 mL). The solution mixture was 

degassed with freeze-pump-thaw cycles (3×) and then heated to 80 °C for 8 h in a sealed 

flask. The volatile materials were removed under reduced pressure giving a yellowish solid, 

which was then extracted with benzene (12 mL). The benzene was evaporated to dryness 

providing an off-white solid that was washed with pentane (3 × 5 mL) and further dried 

under vacuum yielding 0.635 g of ReToM(CO)3 (0.973 mmol, 90.0%) as a white powder. X-

ray quality single crystals were grown from a concentrated toluene solution of ReToM(CO)3 

at -30 °C. 1H NMR (400 MHz, methylene chloride-d2): δ 1.08 (s, 18 H, CNCMe2CH2O), 3.36 

(s, 6 H, CNCMe2CH2O), 7.36 (t, 3JHH = 6.6 Hz 1 H, para-C6H5), 7.54 (t, 3JHH = 7.6 Hz, 2 H, 

meta-C6H5), 8.28 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 HMz, methylene 

chloride-d2): δ 28.18 (CNCMe2CH2O), 70.47 (CNCMe2CH2O), 81.15 (CNCMe2CH2O), 

126.16 (para-C6H5), 126.95 (meta-C6H5), 135.77 (ortho-C6H5), 145.71 (br, ipso-C6H5), 

188.43 (br, CNCMe2CH2O), 197.90 (Re(CO)3). 11B NMR (128 MHz, methylene chloride-

d2): δ −17.4. 15N{1H} NMR (71 MHz, methylene chloride-d2): d −176.8. IR (KBr, cm−1): 

2973 (w), 2934 (W), 2012 (s, νCO, sym), 1892 (s, νCO, asym), 1582 (s, νC=N), 1462 (m), 1390 (w), 

1373 (w), 1354 (w), 1289 (m), 1254 (w), 1203 (m), 1179 (w), 1161 (w), 963 (w). Anal. Calcd. 

for C24H29BN3O6Re: C, 44.18; H, 4.48; N, 6.44. Found: C, 44.13; H, 4.61; N, 6.07. mp 

236 °C (decomp.) 

MnToM(CO)3 (7). The preparation of MnToM(CO)3 follows the method used for 

ReToM(CO)3 given above. LiToM (0.380 g, 0.976 mmol) and Mn(CO)5Br (0.269 g, 0.979 
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mmol) afforded 0.454 g of MnToM(CO)3 (0.871 mmol, 89.0%) as a crystalline yellow solid 

following that procedure. X-ray quality single crystals were grown from a concentrated 

toluene solution of MnToM(CO)3 at -30 °C. 1H NMR (400 MHz, benzene-d6): δ 1.16 (s, 18 H, 

CNCMe2CH2O), 3.40 (s, 6 H, CNCMe2CH2O), 7.35 (br m, 1 H, para-C6H5), 7.53 (br m, 2 H, 

meta-C6H5), 8.30 (br m, 2 H, ortho-C6H5). 13C{1H} NMR (175 HMz, benzene-d6): δ 27.53 

(CNCMe2CH2O), 69.54 (CNCMe2CH2O), 80.96 (CNCMe2CH2O), 126.30 (para-C6H5), 

127.29 (meta-C6H5), 222.74 (Mn(CO)3), 136.32 (ortho-C6H5), 142.80 (br, ipso-C6H5), 189.59 

(br, CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ −17.1. 15N{1H} NMR (71 MHz, 

benzene-d6): d −172.1. IR (KBr, cm−1): 2969 (w), 2930 (W), 2879 (w), 2018 (s, νCO, sym), 

1899 (s, νCO, asym), 1592 (s, νC=N), 1463 (m), 1390 (w), 1372 (w), 1352 (w), 1285 (m), 1200 

(m), 1181 (w), 1158 (w), 993 (w), 969 (w). Anal. Calcd. for C24H29BN3O6Mn: C, 55.30; H, 

5.61; N, 8.06. Found: C, 55.10; H, 5.75; N, 8.05. Mp: 210-212 °C. 

HToP. LiToP (6.150 g, 14.26 mmol) and [HNEt3]Cl (2.159 g, 15.68 mmol) were dissolved in 

methylene chloride and were stirred for 8 h at room temperature. The solution was filtered 

through a plug of neutral alumina. The methylene chloride was evaporated under reduced 

pressure giving a yellow solid, which was extracted with benzene. The filtrate was 

evaporated to dryness, providing 3.245 g of HToP (7.63 mmol, 53.5 %) as a yellow gel. 1H 

NMR (benzene-d6, 400 MHz): δ 0.68 (d, 9 H, 3JHH = 6.8 Hz, CNC(CHMe2)HCH2O), 0.87 (d, 

9 H, 3JHH = 6.4 Hz, CNC(CHMe2)HCH2O), 1.43 (m, 3 H, CNC(CHMe2)HCH2O), 3.44 (m, 3 

H, CNC(CHMe2)HCH2O), 3.61 (t, 3 H, 3JHH = 8.4 Hz, CNC(CHMe2)HCH2O), 3.85 (m, 3 H, 

CNC(CHMe2)HCH2O), 7.26 (t, 1 H, 3JHH = 7.2 Hz, para-C6H5), 7.46 (t, 2 H, 3JHH = 7.2 Hz, 

meta-C6H5), 8.11 (br, 2 H, ortho-C6H5). 13C{1H} NMR (benzene-d6, 100 MHz): δ 19.00 

(CNC(CHMe2)HCH2O), 19.01 (CNC(CHMe2)HCH2O), 33.20 (CNC(CHMe2)HCH2O), 69.56 
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(CNC(CHMe2)HCH2O), 71.06 (CNC(CHMe2)HCH2O), 126.40 (para-C6H5), 127.87 (meta-

C6H5), 134.90 (ortho-C6H5), 146.20 (br, ipso-C6H5), 188.10 (br, CNCMe2CH2O). 11B NMR 

(benzene-d6, 128.4 MHz): δ −16.6. 15N NMR (benzene-d6, 71 MHz): δ −195.6. IR (KBr, 

cm−1): 2961 (w, br), 1601 (s, νC=N), 1468 (m), 1424 (w), 1385 (w), 1313 (w), 1262 (m), 1169 

(w), 1105 (w), 1026 (w), 968 (m). MS (TOF EI) Exact mass calc. for C24H36BN3O3: m/e 

425.2850 ([M]+), Found 425.2866. 

KToP. Solid KH was slowly added in small portions to a solution of HToP (0.602 g, 1.415 

mmol) in THF (15 mL) until gas evolution was no longer observed. The suspension was 

stirred at room temperature for 1 h and filtered. THF was evaporated affording a pale yellow 

gel, which was then triturated with pentane providing 0.616 g of KToP (1.33 mmol, 93.9%) 

as an off-white solid. 1H NMR (acetonitrile-d3, 400 MHz): δ 0.79 (d, 9 H, 3JHH = 6.8 Hz, 

CNC(CHMe2)HCH2O), 0.90 (d, 9 H, 3JHH = 6.8 Hz, CNC(CHMe2)HCH2O), 1.58 (m, 3 H, 

CNC(CHMe2)HCH2O), 3.54 (t, 3 H, 3JHH = 7.6 Hz, CNC(CHMe2)HCH2O), 3.69 (m, 3 H, 

CNC(CHMe2)HCH2O), 3.79 (m, 3 H, CNC(CHMe2)HCH2O), 6.94 (t, 1 H, 3JHH = 6.8 Hz, 

para-C6H5), 7.02 (t, 2 H, 3JHH = 7.2 Hz, meta-C6H5), 7.56 (d, 2 H, 3JHH = 6.4 Hz, ortho-C6H5). 

13C{1H} NMR (acetonitrile-d3, 100 MHz): δ 18.35 (CNC(CHMe2)HCH2O), 19.88 

(CNC(CHMe2)HCH2O), 33.67 (CNC(CHMe2)HCH2O), 67.29 (CNC(CHMe2)HCH2O), 

73.72 (CNC(CHMe2)HCH2O), 124.80 (para-C6H5), 126.90 (meta-C6H5), 135.90 (ortho-

C6H5), 152.74 (br, ipso-C6H5), 183.65 (br, CNCMe2CH2O). 11B NMR (benzene-d6, 128.4 

MHz): δ −16.7. 15N NMR (benzene-d6, 71 MHz): δ −149.1. IR (KBr, cm−1): 2956 (w, br), 

2882 (w), 1601 (s, νC=N), 1480 (m), 1467 (m), 1430 (m), 1385 (m), 1367 (m), 1263 (m), 1105 

(w, br), 967 (m, br), 899 (m), 855 (m), 739 (w), 705 (m). Exact mass calc. for 

C48H70B2KN6O6: m/e 887.5180 ([2M-K]+), Found 887.5279. Mp 95-97 °C. 
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ReToP(CO)3 (6). The preparation of ReToP(CO)3 follows the method used for ReToM(CO)3 

given above. KToP (0.314 g, 0.677 mmol) and Re(CO)5Br (0.276 g, 0.677 mmol) afforded 

0.400 g of ReToP(CO)3 (0.576 mmol, 85.1%) as a pale yellow solid. X-ray quality colorless 

single crystals were grown from a concentrated toluene solution of ReToP(CO)3 at – 30 °C. 

1H NMR (acetonitrile-d3, 400 MHz): δ 0.64 (d, 9 H, 3JHH = 4.0 Hz, CNC(CHMe2)HCH2O), 

0.94 (d, 9 H, 3JHH = 4.0 Hz, CNC(CHMe2)HCH2O), 2.46 (m, 3 H, CNC(CHMe2)HCH2O), 

4.1 (m, 3 H, CNC(CHMe2)HCH2O), 4.26 (m, 6 H, CNC(CHMe2)HCH2O), 7.13 (t, 1 H, 3JHH 

= 4.2 Hz, para-C6H5), 7.19 (t, 2 H, 3JHH = 4.4 Hz, meta-C6H5), 7.63 (d, 2 H, 3JHH = 4.0 Hz, 

ortho-C6H5). 13C{1H} NMR (acetonitrile-d3, 100 MHz): δ 13.89 (CNC(CHMe2)HCH2O), 

18.90 (CNC(CHMe2)HCH2O), 30.19 (CNC(CHMe2)HCH2O), 70.63 (CNC(CHMe2)HCH2O), 

73.83 (CNC(CHMe2)HCH2O), 126.54 (para-C6H5), 127.43 (meta-C6H5), 136.16 (ortho-

C6H5), 142.62 (br, ipso-C6H5), 189.35 (br, CNCMe2CH2O), 198.31 (Re(CO)3).  11B NMR 

(acetonitrile-d3, 128.4 MHz): δ −18.1. 15N NMR (acetonitrile-d3, 71 MHz): δ −195.6. IR 

(KBr, cm−1): 3045 (w), 2964 (m), 2873 (w), 2010 (s, νCO, sym), 1892 (s, br, νCO, asym), 1589 (s, 

νC=N), 1480 (m), 1463 (m), 1391 (m), 1373 (m), 1363 (m), 1352 (m), 1324 (w), 1277 (w), 

1219 (s), 1143 (w), 1115 (m), 1046 (w), 1016 (w), 971 (m), 956 (m), 874 (m), 795 (w), 739 

(w), 702 (m). ). Anal. Calcd. for C247H35BN3O6Re: C, 46.69; H, 5.08; N, 6.05. Found: C, 

45.94; H, 4.93; N, 5.82. Mp  205-207 °C (decomp.). 

MnToP(CO)3 (8). The preparation of MnToP(CO)3 follows the method used for ReToM(CO)3 

given above. KToP (0.213 g, 0.460 mmol) and Mn(CO)5Br (0.127 g, 0.462 mmol) yielded 

0.227 g of MnToP(CO)3 (0.402 mmol, 87%) as a yellow solid. X-ray quality single crystals 

were grown from a concentrated solution of MnToP(CO)3 in a benzene-pentane mixture at 

ambient temperature. 1H NMR (acetonitrile-d3, 400 MHz): δ 0.64 (d, 9 H, 3JHH = 4.0 Hz, 
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CNC(CHMe2)HCH2O), 0.94 (d, 9 H, 3JHH = 4.0 Hz, CNC(CHMe2)HCH2O), 2.46 (m, 3 H, 

CNC(CHMe2)HCH2O), 4.1 (m, 3 H, CNC(CHMe2)HCH2O), 4.26 (m, 6 H, 

CNC(CHMe2)HCH2O), 7.13 (t, 1 H, 3JHH = 4.2 Hz, para-C6H5), 7.19 (t, 2 H, 3JHH = 4.4 Hz, 

meta-C6H5), 7.63 (d, 2 H, 3JHH = 4.0 Hz, ortho-C6H5). 13C{1H} NMR (benzene-d6, 100 

MHz): δ 13.96 (CNC(CHMe2)HCH2O), 19.17 (CNC(CHMe2)HCH2O), 29.90 

(CNC(CHMe2)HCH2O), 69.90 (CNC(CHMe2)HCH2O), 72.95 (CNC(CHMe2)HCH2O), 

126.17 (para-C6H5), 127.22 (meta-C6H5), 136.03 (ortho-C6H5), 142.80 (br, ipso-C6H5), 

189.43 (br, CNCMe2CH2O), 222.85 (Mn(CO)3). 11B NMR (benzene-d6, 128.4 MHz): δ -18.1. 

IR (KBr, cm−1): 3045 (w), 2963 (m), 2873 (w), 2016 (s, νCO, sym), 1961 (s, br, νCO, asym), 1601 

(s, νC=N), 1496 (w), 1481 (m), 1464 (m), 1432 (w), 1391 (m), 1372 (m), 1364 (m), 1350 (m), 

1325 (w), 1278 (w), 1226 (s), 1116 (m), 1044 (m), 972 (m), 873 (m), 798 (m), 738 (w), 702 

(m). Anal. Calcd. for C27H35BN3O6Mn: C, 57.57; H, 6.26; N, 7.46. Found: C, 57.20; H, 6.53; 

N, 7.36. mp 194-196 °C. 

(1) S. P. Schmidt, W. C. Trogler and F. Basolo, Inorg. Synth., 1985, 23, 41. 

(2) J. F. Dunne, J. Su, A. Ellern and A. D. Sadow, Organometallics, 2008, 27, 2399.  

(3) B. Baird, A. V. Pawlikowski, J. Su, J. W. Wiench, M. Pruski and A. D. Sadow, Inorg. 

Chem., 2008, 47, 10208.  
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Fig. S-1 ORTEP diagram of MnToM(CO)3 (7). Ellipsoids are drawn at 50% probability, and 
hydrogen and a disordered toluene (about an inversion center) are omitted for clarity. 	  
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Fig. S-2 ORTEP diagram of MnToP(CO)3 (8). Hydrogen atoms on the methine carbons are 
shown to illustrate the S absolute configuration and isopropyl conformation for the 
oxazolines; all other hydrogen atoms and two co-crystallized benzene molecules are not 
included in the plot. 
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Abstract. 

  An unusual β-elimination reaction involving Zn(II) and LiCl is reported. LiCl and a 

coordinatively saturated disilazido zinc compound form an adduct that contains activated SiH 

moieties. In THF/toluene mixtures, this adduct is transformed into a zinc hydride and 0.5 

equiv. cyclodisilazane. The Li+ and Cl− ions apparently affect the reaction pathway of the 

disilazido zinc in a synergistic fashion. Thus the zinc hydride and cyclodisilazane products of 

formal β-elimination are not observed upon treatment of the zinc disilazide with Cl− or Li+ 

separately. 

Introduction. 

Organozinc compounds are valuable in synthetic chemistry as alkyl, aryl, silyl and hydride 

transfer agents that complement organolithium and organomagnesium reagents.1 Importantly, 

alkali metal and alkaline earth metal salt adducts of zinc reagents give selective group 

transfer chemistry that is distinct from monometallic main group reagents, and related 

adducts facilitate selective arene, hydrocarbon, and alkylether metalations.2 Zn(II) centers 

also mediate physiological processes involving group transfer as in liver alcohol 

dehydrogenase (LADH), where hydride transfer from a zinc alkoxide to NAD+ is proposed.3 
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A connection between synthetic and physiological zinc chemistry is provided by molecular 

coordination complexes such as tris(pyrazolyl)borato zinc alkoxides and hydroxide that 

model LADH,4 carbonic anhydrase,5 and phosphatase.6 Likewise, hydrolase-like 

transesterifications are catalyzed by tris-1,1,1-(oxazolinyl)ethane zinc dicarboxylato and 

ditriflato compounds for kinetic resolution of chiral esters.7 

Given the importance of zinc-mediated group transfer chemistry, it is interesting that β-

hydrogen elimination is not a common pathway for organozinc compounds. For example, 

ZnEt2 undergoes β-elimination only upon IR laser pyrolysis at 600-650 °C, whereas thermal 

treatment results in Zn-C bond hemolysis.8 Few solution phase β-eliminations have been 

suggested, most notably in the thermolysis of [NaZnEt3] under reducing conditions.9 A three- 

coordinate diketiminato zinc hydride is prepared from the corresponding zinc chloride and 

KNHi-PrBH3 via an unobserved amido-BH3 intermediate.10 β-Elimination was also proposed 

as an initiation step in a zinc-catalyzed ketone hydrosilylation.11 Identification of conditions 

that favor or disfavor β-H elimination in zinc(II) compounds may have important 

implications in group transfer reactions in synthetic and enzymatic chemistry. Here, we 

report a coordinatively saturated oxazolinylborato disilazidozinc(II) compound that 

undergoes a formal β-H elimination at room temperature facilitated by LiCl. 

Results and Discussion. 

Treatment of ToMZnCl (1) (ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate) with 

LiN(SiHMe2)2 in benzene readily provides ToMZnN(SiHMe2)2 (2), and no other products are 

detected by 1H NMR spectroscopy before or after workup. The spectroscopic features of the 
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SiH, including its downfield chemical shift (5.26 ppm), high 1JSiH (185 Hz), and νSiH (2110 

cm−1), are consistent with a normal disilazido ligand. An X-ray crystal structure (see 

Supporting Information) contains ZnH and ZnSi distances (2.98 Å and 3.06 Å) that are 

longer than the sums of van der Waals radii. 

Although 2 is formed quantitatively in benzene, in a benzene (10 mL) and THF (2 mL) 

mixture, the compounds 2, 1, and ToMZnH (3) (identified later) are present in a ratio of 

20:1:8 upon workup after 24 h. Additionally, 1,3-diaza-2,4-disilacyclobutane 

(Me2HSiN−SiMe2)2,12 is observed. This cyclodisilazane is the head-to-tail dimer of silaimine 

Me2HSiN=SiMe2; its formation and the presence of zinc hydride 3 suggest a β-elimination 

reaction. Reactions of lithium hydrosilazides and group 14 electrophiles (e.g., 

Me3SiCl) in hexane give cyclodisilazanes, and silaimines are suggested as intermediates in 

one of the two proposed mechanisms.12 These literature transformations require nonpolar 

media, and THF solvent gives substitution rather than elimination. Our zinc system contrasts 

with that of Me3SiCl, with nonpolar solvents giving substitution and THF favoring 

elimination. Neither HN(SiHMe2)2 and LiCl nor mixtures of 1, HN(SiHMe2)2, and LiCl 

afford the cyclodisilazane. 

The identity of zinc hydride 3 is provided by its independent preparation in a two-step 

sequence. Reaction of 1 and KOt-Bu provides ToMZnOt-Bu (4). As shown in Scheme 1, 
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 Scheme 1. LiCl Adduct Formation, β-Elimination and Independent Synthesis of ToMZnH 

 

 PhMeSiH2 and 4 react to give 3. Notably, 2 and PhMeSiH2 do not readily provide 3, 

presumably due to the hindered, non-nucleophilic nature of the zinc disilazide. The IR 

spectrum of 3 contains a νZnH (1745 cm−1, KBr), and the ZnH resonance appears at 4.29 ppm 

in the 1H NMR spectrum (cf. HB(3-tBupz)3ZnH, δZnH 5.36; νZnH 1770 cm−1).13 A single 

crystal X-ray diffraction study reveals that 3 is monomeric and contains a terminal zinc 

hydride, of which there are relatively few crystallographically studied examples including the 

four-coordinate TptBuZnH and TpPh,MeZnH (for which the ZnH are not located)13 and a 

three-coordinate diketiminate ZnH (Zn-H 1.46(2) Å).10 The four-coordinate ZnH in 3 

(1.52(2) Å) is longer by 0.06 Å. 

LiN(SiHMe2)2 and 1 react in THF-d8 to provide possible intermediates in the apparent β-

elimination process. Two Cs- symmetric compounds are detected after 10 min, rather than 
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C3v- symmetric 1, 2, and 3. After 12 h at room temperature, the minor species is partly 

converted into 3 and (Me2HSiN−SiMe2)2. Attempts to isolate these intermediates from 

toluene/THF solvent mixtures (crystallization conditions) afford crystals of 3. 

We suspected that the intermediates formed from 1 and LiN−(SiHMe2)2 in THF were LiCl 

adducts. Therefore, LiCl and zinc disilazide 2 were allowed to interact. A crystallized sample 

of the 1:1 LiCl/2 adduct (5) has the same 1H NMR spectrum as 1:1 LiN(SiHMe2)2/1 (major 

isomer). The νSiH of this material is lower (2061 cm-1) than in the case of 2, and the 1JSiH (102 

Hz) is significantly lower. Compound 5 is fluxional, as it crystallizes at −80 °C from THF 

with a CI-symmetric structure (Figure 1). Although spectroscopic features suggest [M]−SiH 

interactions, there are no close contacts between the SiH moieties and the Zn or Li centers in 

5. Additionally, this interesting structure contains an unusual O-Li-,N-Zn-coordinated 

bridging oxazoline group. The phenyl group on boron and the chloride on zinc are disposed 

syn, as are the N-lithiated oxazoline and N(SiHMe2)2 groups. Because Li+ and Cl− are 

separate in 5, we investigated these ions independently to determine their role in the formal 

β-elimination. 
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Figure 1. ORTEP diagram of 5 drawn at 35% probability. 

Treatment of 2 with [n-Bu4N]Cl in a mixture of benzene-d6 and THF-d8 also gives two Cs-

symmetric species. One of the isomers crystallizes and was structurally characterized as [n-

Bu4N][(κ2-ToM)ZnClN(SiHMe2)2] (6). The IR spectrum (KBr) of 6 shows a broad, intense 

νSiH at 2036 cm−1, which is notably lower energy than in the case of 2 (2110 cm−1) and 5 

(2061 cm−1). The 1J values in 6 (178 Hz) are slightly lower than in the case of 2 (185 Hz). 

After 1 week, neither 3 nor (Me2HSiN−SiMe2)2 is observed, and no change is detected in the 

1H NMR spectrum. Thus, although addition of Cl− affects the νSiH of the disilazide, it does 

not promote β-elimination from the Zn(II) amide. 

Addition of [Li(Et2O)n][B(C6F5)4] to 2 in benzene-d6/THF-d8 mixtures results in oxazoline 

ring-opening giving O−Si bond formation and formal transfer of hydrogen from silicon to the 

(former) imidine carbon (eq 1). 
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A bimolecular transformation, in which a Zn-N bond of 5 reacts with a Si-H bond of a 

second molecule, might also explain the β-H elimination chemistry. However, THF-d8 

solutions of 5 and Et3SiH (as a competitive tertiary SiH group) give ToMZnH and 

cyclodisilazane, while the Et3SiH is unreacted. Also, only starting materials are observed 

upon treatment of 2 with Et3SiH, ruling out an intermolecular dehydrocoupling-type 

mechanism. 

Clearly, Li+ and Cl− have a synergistic effect in this β-elimination reaction through the 

formation of the adduct 5, and this requirement is surprising given the coordinative and 

electronic saturation in both 2 and 5. It is tempting to suggest that Cl− dissociation from 5 

gives a three-coordinate zinc center that undergoes β-elimination. However, such a 

mechanism requires an unlikely 2× repetition of a Cl− coordination and dissociation 

sequence since the final product, ToMZnH, does not form a detectable adduct with LiCl, and 

Cl− appears to be necessary to inhibit oxazoline ring-opening. Cl− also does not appear to 

bind to silicon, as H-transfer is not observed in the absence of Li+. Furthermore, addition of 

the Lewis acids BPh3 or B(C6F5)3 to 6 does not provide cyclodisilazane, suggesting that Li+ 

is not acting as a Lewis acid in 5 to mediate hydride transfer. 
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Conclusion. 

Lithium chloride also affects the electronic properties of the disilazide ligand, as shown by 

the spectroscopy of the β-SiH moiety. This electronic effect may be more significant than a 

low coordination number for zinc because the dicoordinate Zn(N(SiHMe2)2)2 is not reported 

to undergo β-elimination.14 Therefore, we favor a mechanism in which the zinc hydride is 

formed from the four- coordinate [(κ2-ToM)ZnClN(SiHMe2)2]−. Given the importance of Zn-

mediated reactions in synthetic, catalytic, and enzymatic chemistry, we are currently 

investigating related zinc amido, alkyl, silyl, and alkoxide compounds in β-H and group 

transfer reactions. 
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Experimental. 

 General.  

All reactions were performed under a dry argon atmosphere using standard Schlenk 

techniques or under a nitrogen atmosphere in a glovebox, unless otherwise indicated. Water 

and oxygen were removed from benzene, toluene, pentane, diethyl ether, and tetrahydrofuran 

solvents using an IT PureSolv system. Benzene-d6 and tetrahydrofuran-d8 were heated to 
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reflux over Na/K alloy and vacuum-transferred. Anhydrous ZnCl2 was purchased from 

Aldrich and used as received. KOt-Bu was purified by sublimation before use. PhMeSiH2 

was distilled and stored over 4 Å mol. sieves in the glovebox prior to use. Li[ToM] and 

LiN(SiHMe2)2 were synthesized following the reported procedures.1,2 15N chemical shifts 

were determined by 1H-15N HMBC experiments on a Bruker Avance II 700 spectrometer 

with a Bruker Z-gradient inverse TXI 1H/13C/15N 5 mm cryoprobe; 15N chemical shifts were 

originally referenced to liquid NH3 and recalculated to the CH3NO2 chemical shift scale by 

adding −381.9 ppm. 11B NMR spectra were referenced to an external sample of BF3Et2O. 

Elemental analyses were performed using a Perkin-Elmer 2400 Series II CHN/S by the Iowa 

State Chemical Instrumentation Facility. X-ray diffraction data was collected on a APEX II 

as described below. 

ToMZnCl (1). A solution of Li[ToM] (0.486 g, 1.25 mmol) in benzene (30 mL) was added to 

ZnCl2 (0.174 g, 1.27 mmol) suspended in benzene (5 mL). This mixture was stirred at 50 °C 

for 24 h in a teflon-valved storage flask and then filtered. The filtrate was evaporated to 

dryness providing an oil. Upon addition of pentane (15 mL), a white solid precipitated that 

was isolated by decanting the solvent. The solid was washed with pentane (3 × 5 mL) and 

dried under reduced pressure. Recrystallization was carried out from a concentrated toluene 

solution at − 30 °C to obtain analytically pure ToMZnCl (0.471 g, 0.975 mmol, 78.1%). 

Alternative synthesis of ToMZnCl via Tl[ToM]. A solution of Tl[ToM] (1.054 g, 1.80 mmol) 

in benzene (15 mL) was added to ZnCl2 (0.275 g, 2.02 mmol) suspended in benzene (5 mL). 

The solution instantaneously became turbid. This mixture was stirred for 24 h at room 

temperature and then filtered. The filtrate was evaporated to dryness providing a white solid 
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that was washed with pentane (3 × 5 mL) and further dried under vacuum yielding crystalline, 

analytically pure ToMZnCl (0.812 g, 1.68 mmol, 93.6%). X-ray quality single crystals were 

grown from a toluene solution of ToMZnCl at − 30 °C. 1H NMR (400 MHz, benzene-d6): δ 

1.09 (s, 18 H, CNCMe2CH2O), 3.43 (s, 6 H, CNCMe2CH2O), 7.35 (t, 3JHH= 7.2 Hz, 1 H, 

para- C6H5), 7.53 (t, 3JHH = 7.2 Hz, 2 H, meta-C6H5), 8.27 (d, 3JHH = 7.6 Hz, 2 H, ortho- 

C6H5). 13C{1H} NMR (175 HMz, benzene-d6): δ 28.11 (CNCMe2CH2O), 65.73 

(CNCMe2CH2O), 81.35 (CNCMe2CH2O), 126.58 (para- C6H5), 127.38 (meta- C6H5), 136.26 

(ortho- C6H5), 141.33 (br, ipso- C6H5), 190.58 (br, CNCMe2CH2O). 11B NMR (128 MHz, 

benzene-d6): δ -17.1. 15N{1H} NMR (71 MHz, benzene- d6): δ -160.7. IR (KBr, cm−1): 2969 

(m), 1596 (s, νCN), 1461 (m), 1369 (m), 1352 (m), 1274 (m), 1195 (s), 1164 (m), 956 (s), 715 

(m), 712 (s). Anal. Calcd. for C21H29BClN3O3Zn: C, 52.21; H, 6.05; N, 8.70. Found: C, 

52.61; H, 6.11; N, 8.60. Mp 296-300 °C (dec). 

ToMZnN(SiHMe2)2 (2). A benzene solution of ToMZnCl (0.115 g, 0.238 mmol) was added 

to a benzene solution of LiN(SiHMe2)2 (0.033 g, 0.237 mmol). The resulting white mixture 

was stirred for 12 h at room temperature and then filtered. The filtrate was evaporated to 

obtain a white solid, which was washed with pentane (3 × 5 mL) and further dried under 

vacuum to obtain 0.092 g (0.159 mmol, 67.2%) of crystalline, analytically pure 

ToMZnN(SiHMe2)2. X-ray quality single crystals were grown from a concentrated toluene 

solution of ToMZnN(SiHMe2)2 at − 30 °C. 1H NMR (400 MHz, benzene-d6): δ 0.54 (d, 3JHH 

= 3.2 Hz, SiHMe2), 1.19 (s, 18 H, CNCMe2CH2O), 3.43 (s, 6 H, CNCMe2CH2O), 5.26 (m, 

3JHH = 3.2 Hz, 1JSiH = 185 Hz, SiHMe2), 7.35 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 7.53 (t, 3JHH 

= 7.2 Hz, 2 H, meta- C6H5), 8.29 (d, 3JHH = 7.6 Hz, 2 H, ortho- C6H5). 13C{1H} NMR (175 
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MHz, benzene-d6): δ 5.37 (SiHMe2), 28.36 (CNCMe2CH2O), 66.50 (CNCMe2CH2O), 81.34 

(CNCMe2CH2O), 126.29 (para-C6H5), 127.23 (meta-C6H5), 136.47 (ortho-C6H5), 142.63 (br, 

ipso-C6H5), 191.20 (br, CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ -17.1. 15N{1H} 

NMR (71 MHz, benzene-d6): -159.8 (CNCMe2CH2O), -170.2 (ZnN(SiHMe2)2). 29Si{1H} 

NMR (79.5 MHz, benzene-d6): δ -13.9. IR ( KBr, cm−1): 2964 (m), 2110 (s, νSiH), 1594 (s, 

νC=N), 1462 (m), 1353 (m), 1272 (m), 1244 (m), 1195 (m), 1040 (w), 959 (m), 922 (w), 886 

(s), 810 (w). Anal. Calcd for C25H43BN4O3Si2Zn: C, 51.77; H, 7.47; N, 9.66. Found: C, 

51.31; H, 7.55; N, 9.46. Mp 232 – 234 °C (dec). 

ToMZnH (3). PhMeSiH2 (0.060 g, 0.491 mmol) and ToMZnOt-Bu (0.240 g, 0.461 mmol) 

were allowed to react at room temperature in benzene for 0.5 h. The volatile materials were 

removed under reduced pressure providing a white solid. This material was washed with 

pentane (3 × 5 mL) and dried under vacuum affording crystalline ToMZnH as an analytically 

pure white solid in good yield (0.182 g, 0.406 mmol, 88.0%). X-ray quality single crystals of 

ToMZnH were grown from a concentrated toluene solution at − 30 °C. 1H NMR (400 MHz, 

benzene-d6): δ 1.06 (s, 18 H, CNCMe2CH2O), 3.48 (s, 6 H, CNCMe2CH2O), 4.29 (s, 1 H, 

ZnH), 7.37 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 7.56 (t, 3JHH = 7.6 Hz, 2 H, meta-C6H5), 8.37 

(d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 MHz, benzene-d6): δ 28.30 

(CNCMe2CH2O), 65.56 (CNCMe2CH2O), 80.99 (CNCMe2CH2O), 126.26 (para-C6H5), 

127.26 (meta-C6H5), 136.42 (ortho-C6H5), 142.61 (br, ipso-C6H5), 190.28 (br, 

CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ -17.0. 15N{1H} NMR (71 MHz, 

benzene-d6): δ -156.0. IR (KBr, cm−1): 2970 (s), 1745 (s, νZnH), 1603 (s, νC=N), 1461 (m), 

1386 (m), 1367 (m), 1351 (m), 1272 (m), 1193 (m), 1161 (m), 953 (s), 895 (w), 842 (w), 818 
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(s), 749 (m), 709 (s), 673 (w), 658 (w). Anal. Calcd for C21H30BN3O3Zn: C, 56.22; H, 6.74; 

N, 9.37. Found: C, 55.89; H, 6.77; N, 9.20. Mp 272-276 °C (dec). 

ToMZnOt-Bu (4). A benzene solution of ToMZnCl (0.405 g, 0.838 mmol, 10 mL) was added 

to KOt-Bu (0.094 g, 0.838 mmol) dissolved in benzene (5 mL). The reaction mixture was 

stirred for 12 h at room temperature. The KCl by-product was removed by filtration to 

provide a colorless solution. Evaporation of the benzene provided a white solid, which was 

washed with pentane (3 × 5 mL) and dried under vacuum affording crystalline, analytically 

pure ToMZnOt-Bu (0.390 g, 0.749 mmol, 89.4%). X-ray quality single crystals of ToMZnOt-

Bu were obtained from a concentrated toluene solution at − 30 °C. 1H NMR (400 MHz, 

benzene-d6): δ 1.16 (s, 18 H, CNCMe2CH2O), 1.65 (s, 9 H, ZnOCMe3), 3.45 (s, 6 H, 

CNCMe2CH2O), 7.37 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 7.55 (t, 3JHH = 7.6 Hz, 2 H, meta-

C6H5), 8.31 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 MHz, benzene-d6): δ 

28.27 (CNCMe2CH2O), 37.11 (ZnOCMe3), 65.99 (CNCMe2CH2O), 68.59 (ZnOCMe3), 81.16 

(CNCMe2CH2O), 126.33 (para-C6H5), 127.27 (meta-C6H5), 136.40 (ortho-C6H5), 142.49 (br, 

ipso-C6H5), 190.35 (br, CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ −17.0. 

15N{1H} NMR (71 MHz, benzene-d6): δ − 158.8. IR (KBr, cm−1): 2967 (s), 2931 (w), 1597 

(s), 1578 (s), 1462 (m), 1368 (m), 1346 (m), 1274 (m), 1198 (s), 1163 (m), 990 (s), 967 (s), 

940 (w), 899 (w), 845 (w), 818 (w), 745 (w), 733 (w), 704 (s), 675 (w). Anal. Calcd for 

C25H38BN3O4Zn: C, 57.66; H, 7.35; N, 8.07. Found: C, 57.18; H, 7.54; N, 8.00. Mp 260-

262 °C (dec). 

(THF)2Li(µ-κ2-O,N-κ2-N,N-ToM)ZnClN(SiHMe2)2 (5). A THF solution of 

ToMZnN(SiHMe2)2 (0.856 g, 1.48 mmol) was added to a THF solution of LiCl (0.063 g, 1.49 
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mmol), and the resulting solution was cooled to − 80 °C. White crystalline material 

precipitated, which was then isolated and dried under vacuum to obtain (THF)2Li(µ-κ2-O,N-

κ2-N,N-ToM)ZnClN(SiHMe2)2 (5) as a white solid in good yield (0.995 g, 1.30 mmol, 87.9%). 

X-ray quality single crystals were grown from a concentrated THF solution at -80 °C. 1H 

NMR (400 MHz, tetrahydrofuran-d8): δ 0.09 (br d, 12 H, SiHMe2), 1.34 (s, 6 H, 3.43 

CNCMe2CH2O), 1.45 (s, 6 H, CNCMe2CH2O), 1.50 (s, 6 H, CNCMe2CH2O), 1.78 (m, 8 H, 

α-CH2 THF), 3.62 (m, 8 H, β- CH2 THF), 3.68 (d, 2JHH = 3.2 Hz, 2 H, CN(Zn)CMe2CH2O), 

3.80 (d, 2JHH = 3.2 Hz, 2 H, CN(Zn)CMe2CH2O), 3.83 (s, 2 H, CN(Li)CMe2CH2O), 4.61 (m, 

2 H, 1JSiH = 102 Hz, SiHMe2), 6.97 (t, 3JHH = 4.0 Hz, 1 H, para-C6H5), 7.05 (t, 3JHH = 4.0 Hz, 

2 H, meta-C6H5), 7.18 (d, 3JHH = 4.0 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 HMz, 

tetrahydrofuran-d8): δ 4.15 (SiHMe2), 26.52 (THF, β-CH2), 28.36 (CNCMe2CH2O), 28.96 

(CNCMe2CH2O), 68.20 (CNCMe2CH2O), 68.38 (THF, α-CH2), 78.72 (CNCMe2CH2O), 

78.83 (CNCMe2CH2O), 125.73 (para-C6H5), 127.80 (meta- C6H5), 133.67 (ortho- C6H5), 

149.79 (br, ipso- C6H5), 185.36 (br, CNCMe2CH2O). 11B NMR (128 MHz, tetrahydrofuran-

d8): δ -17.1. 15N{1H} NMR: δ − 161.0 (CN(Li)CMe2CH2O), − 161.6 (CN(Zn)CMe2CH2O). 

29Si{1H} NMR (79.5 MHz, tetrahydrofuran-d8): δ -19.0. IR ( KBr, cm−1): 2965 (s), 2898 (m), 

2061 (m, br, νSiH), 1613 (s, νC=N), 1590 (s, νC=N), 1463 (m), 1433 (m), 1370 (m), 1249 (m, br), 

1197 (m), 998 (w), 971 (w), 930 (w), 895 (s), 738 (m). Anal. Calcd for 

C33H59BN4O5ClSi2LiZn: C, 51.70; H, 7.76; N, 7.31. Found: C, 51.46; H, 7.75; N, 7.99. Mp 

184-186°C (dec). 

[nBu4N][(κ2-ToM)Zn(Cl)N(SiHMe2)2] (6). A toluene solution of ToMZnN(SiHMe2)2 (0.411 

g, 0.709 mmol) was added to [nBu4N]Cl (0.197 g, 0.709 mmol) dissolved in THF (5 mL). 
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The reaction mixture was stirred for 1 h at room temperature inside the glove box. White 

crystalline solid precipitated upon partial evaporation of the solvent in vacuo. This mixture 

was cooled to − 30 °C overnight to facilitate additional crystallization. The residual solvent 

was then decanted, and the crystalline solid was washed with cold toluene (5 mL) and 

pentane (5 mL) and finally dried under vacuum affording [nBu4N][(κ2-

ToM)Zn(Cl)N(SiHMe2)2] as analytically pure white solid in good yield (0.512 g, 0.594 mmol, 

83.9%). [nBu4N][(κ2-ToM)Zn(Cl)N(SiHMe2)2] is insoluble in pure benzene or toluene, so 

spectroscopic measurements were obtained in a 6:1 benzene-d6/tetrahydrofuran-d8 mixture. 

Two isomers are present in a 3.6:1 ratio. X-ray quality single crystals were grown from a 

concentrated solution mixture containing toluene and tetrahydrofuran (20:1) at − 30 °C. 1H 

NMR (400 MHz, benzene-d6:THF-d8 = 6:1): δ 0.38 (d, 3JHH = 3.2 Hz, SiHMe2, minor 

isomer), 0.47 (d, 3JHH = 2.8 Hz, SiHMe2, major isomer), 0.87 (t, 3JHH = 7.2 Hz, 

N(CH2CH2CH2CH3)4]), 1.17 (s, CNCMe2CH2O, minor isomer), 1.30-1.19 (m, 

N(CH2CH2CH2CH3)4), 1.21 (s, CNCMe2CH2O, major isomer), 1.44 (s, CN(Zn)CMe2CH2O, 

major isomer), 1.50 (s, CN(Zn)CMe2CH2O, minor isomer), 1.55 (s, CN(Zn)CMe2CH2O, 

minor isomer), 1.57 (s, CN(Zn)CMe2CH2O, major isomer), 2.80 (t, br, 3JHH = 7.2 Hz, 

N(CH2CH2CH2CH3)4), 3.47 (d, 2JHH = 7.6 Hz, CN(Zn)CMe2CH2O, major isomer), 3.49 (d, 

2JHH = 7.6 Hz, CN(Zn)CMe2CH2O, minor isomer), 3.52 (s, CNCMe2CH2O, minor isomer), 

3.57 (s, CNCMe2CH2O, major isomer), 3.59 (d, 2JHH = 7.6 Hz, CN(Zn)CMe2CH2O, major 

isomer), 3.65 (d, 2JHH = 7.6 Hz, CN(Zn)CMe2CH2O, minor isomer), 5.01 (m, 3JHH = 3.2 Hz, 

1JSiH = 178 Hz, SiHMe2, minor isomer), 5.16 (m, 3JHH = 3.2 Hz, 1JSiH = 178 Hz, SiHMe2, 

major isomer), 6.94-7.00 (m, para-C6H5, major and minor isomers), 7.08-7.12 (m, meta- 

C6H5, major and minor isomers), 7.84 (d, 3JHH = 7.6 Hz, ortho-C6H5, minor isomer), 7.95 (d, 
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3JHH = 6.8 Hz, ortho-C6H5, major isomer). 13C{1H} NMR (175 MHz, benzene-d6:THF-d8 = 

6:1): δ 4.69 (N(SiHMe2)2, major isomer), 4.76 (N(SiHMe2)2, minor isomer), 14.18 

(N(CH2CH2CH2CH3)4), 20.36 (N(CH2CH2CH2CH3)4), 24.50 (N(CH2CH2CH2CH3)4), 28.14 

CN(Zn)CMe2CH2O, minor isomer), 28.28 (CN(Zn)CMe2CH2O, minor isomer), 28.35 

(CN(Zn)CMe2CH2O, major isomer), 29.26 (CN(Zn)CMe2CH2O, major isomer), 29.38 

(CN(Zn)CMe2CH2O, minor isomer), 29.52 (CN(Zn)CMe2CH2O, major isomer), 58.88 

(N(CH2CH2CH2CH3)4), 68.10 (CNCMe2CH2O, minor isomer), 68.27 (CNCMe2CH2O, major 

isomer), 76.86 (CNCMe2CH2O, minor isomer), 77.11 (CNCMe2CH2O, major isomer), 78.76 

(CN(Zn)CMe2CH2O, minor isomer), 78.78 (CN(Zn)CMe2CH2O, major isomer), 124.61 

(para-C6H5, major isomer), 124.77 (para-C6H5, minor isomer), 126.77 (meta-C6H5, minor 

isomer), 126.96 (meta-C6H5, major isomer), 135.48 (ortho-C6H5, major isomer), 136.30 

(ortho-C6H5, minor isomer), 149.23 (br, ipso-C6H5, minor isomer), 150.36 (br, ipso-C6H5, 

major isomer), 177.63 (br, CNCMe2CH2O, major isomer), 180.25 (br, CNCMe2CH2O, minor 

isomer), 187.90 (br, CN(Zn)CMe2CH2O, minor isomer),188.88 (br, CN(Zn)CMe2CH2O, 

major isomer). 11B NMR (128 MHz, benzene-d6): δ -16.9. 15N(1H} NMR (71 MHz, benzene-

d6): -168.1 (CN(Zn)CMe2CH2O, major isomer), -124.9 (CNCMe2CH2O, major isomer,), -

167.5 (CN(Zn)CMe2CH2O, minor isomer), -125.9 (CNCMe2CH2O, minor isomer), -163.4 

(N(SiHMe2)2, major isomer), -162.6 (N(SiHMe2)2, minor isomer). 29Si{1H} NMR (benzene-

d6:THF-d8 = 6:1, 79.5 MHz): δ -17.86 (major isomer), -18.68 (minor isomer). IR (KBr, cm-

1): 2964 s (br), 2878 s (br), 2045 (br s, νSiH), 1595 (s, νC=N), 1463 (s), 1369 (m), 1272 (m), 

1234 (s), 1197 (m), 1144 (m), 997 (s), 930 (m), 909 (s), 865 (m), 829 (w), 757 (m), 741 (m), 

707 (s). Anal. Calcd for C41H79BN5O3Si2ClZn : C, 57.40; H, 9.28; N, 8.16. Found: C, 57.57; 
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H, 9.02; N, 8.12. Mp 178-180 °C. 

{κ4-N,N,N,N-PhB(OxMe2)2(CHNCMe2CH2OSiMe2)N(SiHMe2)}Zn (7). A benzene 

solution of ToMZnN(SiHMe2)2 (0.310 g, 0.585 mmol) was heated to 120 °C for 3 days in a 

sealable teflon-valved flask. The solvent was then evaporated to obtain a white solid, which 

was washed with pentane (3 × 5 mL) and dried under vacuum to obtain 0.210 g (0.396 mmol, 

67.7%) of crystalline, analytically pure {κ4-N,N,N,N-

PhB(OxMe2)2(CHNCMe2CH2OSiMe2)N(SiHMe2)}Zn. X-ray quality single crystals were 

grown from a concentrated toluene solution at − 30 °C. 1H NMR (400 MHz, benzene-d6): δ 

0.48 (s, 6 H, NSiMe2O-), 0.53 (d, 3JHH = 3.2 Hz, 6 H, NSiHMe2), 0.84 (s, 6 H, 

HCNCMe2CH2OSiMe2), 1.06 (s, 6 H, CNCMe2CH2O), 1.24 (s, 6 H, CNCMe2CH2O), 3.35 

(3JHH = 4.8 Hz, 4 H, CNCMe2CH2O), 3.59 (s, 2 H, CNCMe2CH2O), 5.23 (m, 1 H, 1JSiH = 184 

Hz, NSiHMe2), 7.40 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 7.57 (t, 3JHH = 7.6 Hz, 2 H, meta-

C6H5), 8.38 (d, 3JHH = 6.0 Hz, 2 H, ortho-C6H5), 9.22 (s, 1 H, HCNCMe2CH2O). 15C{1H} 

NMR (175 MHz, benzene-d6): δ 3.90 (SiMe2), 4.69 (SiHMe2), 25.47 

(HCNCMe2CH2OSiMe2), 28.18 (CNCMe2CH2O), 28.67 (CNCMe2CH2O), 62.73 

(CNCMe2CH2O), 66.30 (CNCMe2CH2O), 71.02 (HCNCMe2CH2OSiMe2), 80.59 

(CNCMe2CH2O), 126.48 (para-C6H5), 127.90 (meta-C6H5), 135.40 (ortho-C6H5), 145.78 (br, 

ipso-C6H5), 190.13 (br, CNCMe2CH2O), 196.82 (br, HCN(Zn)CMe2CH2OSiMe2). 11B NMR 

(128 MHz, benzene-d6): δ -16.8. 15N{1H} NMR (benzene-d6, 71 MHz): -263.6 

(HCNCMe2CH2OSiMe2), -166.1 (CNCMe2CH2O), -157.4 (ZnN(SiHMe2)(SiMe2O-)). 

29Si{1H} NMR (79.5 MHz, benzene-d6): δ -67.63 (SiMe2), -13.88 (SiHMe2). IR (KBr, cm−1): 

2966 (s, br), 2891 (m, br), 2094 (s, νSiH), 1605 (m, νC=N), 1557 (w), 1462 (m), 1368 (m), 
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1354 (m), 1274 (m), 1247 (s), 1195 (s), 1161 (m), 1109 (s), 1032 (s), 993 (w), 967 (w), 922 

(m), 899 (m), 851 (m), 821 (w), 786 (w). Anal. Calcd for C25H43BN4O3Si2Zn: C, 51.77; H, 

7.47; N, 9.66. Found: C, 52.26; H, 7.46; N, 9.66. Mp 216-220 °C. 
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Figure S1. ORTEP diagram of ToMZnCl (1) with ellipsoids drawn at 50% probability. 
Hydrogen atoms are not included to enhance the clarity of heavy atom positions. 
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Figure S2. ORTEP diagram of ToMZnN(SiHMe2)2 (2) with ellipsoids drawn at 50% 
probability. Hydrogen atoms, with the exception of those on Si, are not included to enhance 
the clarity of heavy atom positions. 
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Figure S3. ORTEP diagram of ToMZnH (3) with ellipsoids drawn at 50% probability. 
Hydrogen atoms, with the exception of the one on Zn, are not included to enhance the clarity 
of heavy atom positions. 
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Figure S4. ORTEP diagram of ToMZnOt-Bu (4) with ellipsoids drawn at 50% probability. 
Hydrogen atoms are not included to enhance the clarity of heavy atom positions. 
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Figure S6. ORTEP diagram of [nBu4N][(κ2-ToM)Zn(Cl)N(SiHMe2)2] (6) with ellipsoids 
drawn at 50% probability. Hydrogen atoms, with the exception of those bonded to Si, are not 
included to enhance the clarity of heavy atom positions. 
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Figure S7. ORTEP diagram of {κ4- N,N,N,N-
PhB(OxMe2)2(CHNCMe2CH2OSiMe2)N(SiHMe2)}Zn (7) with ellipsoids drawn at 35% 
probability. Hydrogen atoms, with the exception of the one bonded to Si, are not included to 
enhance the clarity of heavy atom positions. Only one of the two superimposed molecules 
(resulting from disorder) is shown. 
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Chapter 4: Coordinatively Saturated Tris(oxazolinyl)borato Zinc Hydride-Catalyzed 

Cross-Dehydrocoupling of Silanes and Alcohols. 
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Abstract. 

  The four-coordinate zinc compound ToMZnH (1, ToM = tris(4,4-dimethyl-2-

oxazolinyl)phenylborate) catalyzes selective alcoholysis of substituted hydrosilanes. The 

catalytic reaction of PhMeSiH2 and aliphatic alcohols favors the monodehydrocoupled 

product PhMeHSi–OR. With the aryl alcohol 3,5-C6H3Me2OH, the selectivity for 

mono(aryloxy)hydrosilane PhMeHSiOC6H3Me2 and bis(aryloxy)silane PhMeSi(OC6H3Me2)2 

is controlled by relative reagent concentrations. Reactions of secondary organosilanes and 

diols provide cyclic bis(oxo)silacycloalkanes in high yield. The empirical rate law for the 

ToMZnH-catalyzed reaction of 3,5-dimethylphenol and PhMeSiH2 is −d[PhMeSiH2]/dt = 

k′obs[ToMZnH]1[3,5-C6H3Me2OH]0[PhMeSiH2]1 (determined at 96 °C) which indicates that 

Si–O bond formation is turnover-limiting in the presence of excess phenol. 

Introduction. 

Si−O bond formation is important in materials preparations and surface derivatizations. For 

example, alkoxysilanes are a central component in the preparation of functionalized meso- 

porous silica nanospheres (MSNs), either by co-condensation routes or grafting reactions 
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through hydrolytic Si−O bond formations.1,2 Our interest in the catalytic preparation of 

alkoxysilanes was inspired by our interactions with Prof. Victor Lin, as we sought to 

synthesize precursors for advanced silica-based functionalized nanomaterials for catalytic 

applications. Silyl ethers are also important building blocks in organosilicon chemistry and in 

synthetic organic chemistry as protecting groups.3 The reaction of chlorosilanes and alcohols 

provides a straightforward route to Si−O bonds. However, the HCl by-product of these 

reactions must be trapped with base, and this method is not useful for syntheses that require 

neutral conditions. The degree of condensation is difficult to control when more than one 

Si−Cl group is present in the silicon substrate. Furthermore, chlorosilanes are water sensitive 

and must be kept rigorously anhydrous prior to use. Catalytic Si−H bond alcoholysis (eq 1) 

can avoid these problems, giving H2 as the byproduct and bypassing acid formation and/or 

basic conditions. Organosilanes are not hydrolytically sensitive (in the absence of a catalyst), 

and catalysts can control selectivity. 

 

A range of homogeneous and heterogeneous catalytic systems have been developed for 

hydrosilane alcoholysis, including early, middle, and late transition metal complexes of 

titanium,4−6 manganese,7 rhenium,8 iron,9 ruthenium,10,11 rhodium,12 iridium,13 nickel,14,15 

copper,16−19 gold,20 and platinum.21 Strong Lewis acids, such as B(C6F5)3, are also catalysts.22 

A number of reaction mechanisms have been proposed, including alcohol attack on η2-

hydrosilane or silyl hydride transition-metal complexes formed via oxidative addition 

steps.7,13,14 In contrast, copper- and gold-catalyzed silane alcoholyses are proposed to involve 

R3'SiH + HOR
catalyst

R3'Si OR + H2 (1)
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discrete metal hydride and metal-alkoxide intermediates (no M−Si bond).18,20 In situ 

generated zinc(II) catalysts are also proposed to follow this mechanism.23 However, these 

zinc, copper, and gold catalysts are generated in situ, the catalytic speciation is unknown, and 

the turnover-limiting step has not been established. 

Results and Discussion. 

Zinc(II) catalysts are particularly interesting, given the low cost, favorable biocompatibility, 

and high natural abundance of this main group metal. Although zinc hydrides are presumed 

intermediates in hydrosilane alcoholysis, the catalytic activity of the few isolable, monomeric, 

terminal zinc hydrides is not developed.24−28 We recently synthesized a monomeric zinc 

hydride ToMZnH (1; ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate) by reaction of 

ToMZnOtBu (2) and PhMeSiH2. The byproduct of this reaction is the silyl ether 

PhMeHSi−OtBu.  

 

Incorporation of this step into a catalytic cycle for Si−O bond formation would provide an 

opportunity to use a well-defined set of alkoxide and hydride intermediates, as well as 

stoichiometic reactions, to study and develop zinc-catalyzed transformations. Furthermore, 

the zinc-catalyzed reactions are mechanistically distinct from transition-metal catalyzed 

silane alcoholyses in that oxidative addition pathways are unlikely in the main group system. 

1

PhMeSiH2

benzene, r.t.
OBPh

N
O

Zn

O
N

O N

HBPh
N

O

Zn

O
N

O N

+ PhMeHSi-OtBu (2)
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Here we present the reactivity and selectivity of 1 as a catalyst for silane alcoholysis and 

kinetic studies on a catalytic conversion. Although ToMZnMe (3), tert-butoxide 2, and 

ToMZnOAryl (4; Aryl = C6H3Me2) may be used as precatalysts,29 these compounds have 

some limitations. For example, alkyl 3 reacts relatively slowly with some alcohols, and that 

step can impede efficient catalyst initiation. While tert-butoxide 2 is the catalyst precursor, 1 

equiv of silane is wasted as R3Si−OtBu. Therefore, compound 1 is the precatalyst of choice 

for these studies, and although it is moisture sensitive, 1 does not react with O2 under 

ambient conditions. The monomeric zinc hydride 1 was previously prepared following a 

three-step synthesis where ToMZnCl and 2 intermediates were isolated from the TlCl and 

KCl reaction byproducts.30 An alternative and easy one pot preparation involves sequential 

treatment of H[ToM] with ZnMe , MeOH, and then PhMeSiH2 in benzene or toluene (eq 3). 

 

 

 

The byproducts of this synthesis are methane and PhMeHSi−OMe, and evaporation of the 

volatile materials provides crystalline and spectroscopically pure 1. The 3 intermediate is 

isolable and fully characterized, including an X-ray structure (Figure 1) that shows the 

pseudo-C3v-symmetric four-coordinate zinc alkyl complex. The bowl-like steric properties of 

ToM prevent redistribution to {κ3-ToM}2Zn yet allow sufficient space for reactivity.  

1. ZnMe2
2. MeOH
3. PhSiH3

1

HBPh
N

O

Zn

O
N

O N

H[ToM]

benzene, r.t.

(3)
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Figure 1. ORTEP diagram of ToMZnMe (3) drawn with ellipsoids at 50% probability. 
Hydrogen atoms are not shown. Selected bond distances (Å): Zn1−C6, 1.972(1); Zn1−N1, 
2.0574(9); Zn1−N2, 2.0797(9); Zn1−N3, 2.0955(9). Selected bond angles (deg): 
C6−Zn1−N1, 122.25(5); C6−Zn1−N2, 130.25(5); C6−Zn1−N3, 122.93(5). 

 

The constitution and pseudo C3v-symmetry of 1 is maintained in solution. Thus, a 2D 1H−15N 

NMR correlation experiment contained crosspeaks for the oxazoline nitrogen signal (−155.8 

ppm), including one with the zinc methyl resonance that indicated both ligands are bonded in 

the same complex. 

Compound 1 is a catalyst for reactions of aliphatic alcohols ROH (R = Me, Et, CH2
tBu, iPr, 

tBu) and the secondary silane PhMeSiH2 to give the monodehydrocoupled silyl ether 

PhMeHSi−OR as the major product with good selectivity (Table 1). At lower temperature, 

selectivity is further improved although the rate is sacrificed (e.g., MeOH and PhMeSiH2 
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react to give 90% yield of PhMeHSi−OMe at 45 °C; PhMeHSi−OCH2
tBu is formed with 

>99% selectivity at 85 °C). For comparison, the Cp2TiCl2/n-BuLi system converts all SiH 

groups of secondary and primary silanes to bis- and tris-alkoxy silanes, respectively.4 

However, Wilkinson’s catalyst and chiral phosphine/rhodium(I) catalysts provide 

alkoxy(hydro)silanes from secondary silanes and alcohols,12 as does the chiral 

phosphine/copper system.17 The selectivity observed in these systems and the oxazolinyl- 

borato zinc system contrast the often observed relative reactivity of organosilanes versus 

alkoxy hydrosilanes, where the latter are more reactive (e.g., as in titanium-catalyzed 

hydrosilylations).31 Selectivity for the monoalkoxy silane product increases with increasing 

size of the alcohol, and sterically hindered alcohols require higher temperature and longer 

reaction times. Although sterics play a large role in this selectivity (in that PhMe(RO)SiH is 

more hindered than PhMeSiH2), experiments with the tertiary organosilane BnMe2SiH (Bn = 

CH2C6H5) show that the effects are subtle. 

Thus, compound 1 also catalyzes the dehydrocoupling of the tertiary silane BnMe2SiH with 

primary, secondary, and tertiary alcohols. Unexpectedly, the Zn-catalyzed reactions of the 

tertiary organosilane BnMe2SiH and alcohols are more rapid than the corresponding 

reactions with secondary silane PhMeSiH2. All of these dehydrocoupling reactions are 

sensitive to the steric bulk of the alcohol. For example, PhMeSiH2 reacts four times slower 

than BnMe2SiH under equivalent conditions (catalyst loading, reagent concentrations, 

temperature). tBuOH is an exception to this trend likely because of high steric congestion 

(see Table 1). Despite the apparently greater rate of alcoholysis of tertiary organosilanes, the 

secondary organosilanes react with good selectivity for the monosilyl ether products. Notably, 
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ToMZnH is observed by 1H NMR spectroscopy during the reactions, and apparently it is 

thermally stable and catalytically active to even 135 °C for 64h. 

The thermal and kinetic stability of the ToMZnX-complexes suggested that lower catalyst 

loadings could be used in larger scale reactions for the convenient isolation of alkoxysilanes. 

In fact, catalyst loadings as low as 0.27 mol % provide product, albeit with increased reaction 

times. Additionally, these catalyses are efficient for gram-scale reactions of organosilanes, 

and the products PhMeHSiOMe, BnMe2SiOMe, PhMeHSiOEt, PhMeHSiOiPr, and 

PhMeHSiOtBu are readily obtained in our catalytic system.29 Compound 1 also catalyzes the 

dehydrocoupling reaction of the substituted phenol 3,5-Me2C6H3OH and PhMeSiH2. 

 

Table 1. Micromolar-Scale Reactions of PhMeSiH2 and BnMe2SiH with ROH 

 

Alcohol Producta Temperature Time (h) Selectivity (%)b 

MeOH 

MeOH 

PhMeHSiOMe 

PhMeHSiOMe 

45 °C 

60 °C 

10 

4.2 

89 : 11c 

81 : 19c 

EtOH PhMeHSiOEt 60 °C 20 89 : 11c 

tBuCH2OH PhMeHSiOCH2
tBu 135 °C 5 93 : 7 

iPrOH PhMeHSiOiPr 85 °C 45 95:5c 

tBuOH PhMeHSiOtBu 135 °C 13 >99 
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a10 mol % catalyst loading for the reaction of equimolar ROH and PhMeSiH2 to 100% 
conversion in benzene-d6.b Products were identified and selectivity was determined by 1H 
NMR spectroscopy and GC-MS, and by comparison with isolated materials.c The minor 
product is the dialkoxylsilane PhMeSi(OR)2. 

 

Equimolar PhMeSiH2 and 3,5-Me2C6H3OH affords 1:2:1 mixtures of PhMeSiH2, 

PhMeHSiOC6H3Me2 and PhMeSi(OC6H3Me2)2 under catalytic conditions, contrasting the 

higher selectivity found with aliphatic alcohols. However, relative ratios of starting materials 

can be used to control the product distribution, and both PhMeHSiOC6H3Me2 and 

PhMeSi(OC6H3Me2)2 are isolable in pure form in high yield. For example, 5 equiv of 

PhMeSiH2 with respect to 3,5-Me2C6H3OH affords PhMeHSiOC6H3Me2 (89.2%), whereas 3 

equiv of 3,5-Me2C6H3OH versus PhMeSiH2 provides PhMeSi(OC6H3Me2)2 (90.8%). In both 

cases, the excess reagent is recovered in pure form during the distillation and is not wasted. 

Diols are also challenging substrates for cross-dehydrocoupling because polymers, branched 

oligomers, and a range of cyclic species are possible products. Titanocene complexes are 

catalysts for cyclization to give five, six, and seven-member rings,4 and this provides a classic 

example for catalytic control over selectivity in Si−O bond forming reactions. The steric 

 

Alcohol Producta Temperature Time (h) Selectivity (%)b 

MeOH BnMe2SiOMe 60 °C 1 n.a. 

EtOH BnMe2SiOEt 60 °C 4 n.a. 

iPrOH BnMe2SiOiPr 60 °C 25 n.a. 

tBuOH BnMe2SiOtBu 135 °C 64 n.a. 
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control, efficient transformations, and high selectivities observed with the convenient 

ToMZnH system provide small cyclic dioxasilacycles in high yield and high purity using 

PhMeSiH2 and Ph2SiH2 (Table 2).29 Additionally, the PhMeSiH2/pinacol and Ph2SiH2/2,4-

pentanediol products are crystalline at room temperature, and their identities are confirmed 

by X-ray crystallography (see Supporting Information). 

Table 2. Catalytic Cyclization of Secondary Silanes and Diols. 

 

Producta isolated yieldb selectivity 

 
92.2% n.a. 

 

96.8% 1 : 2.11 : 2.27 

 
91.5% n.a. 
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93.0% 1 : 1.15 

aConditions for catalysis: 0.1−0.3 mol % ToMZnH, 8 mmol diol, and 7 mmol organosilane 
were dissolved in benzene, degassed, and stirred at 60−90 °C.b Products are isolated by 
distillation, and yield is calculated for five- or six-member ring product(s) after distillation. 

 

       Given the range of proposed mechanisms for metal-mediated dehydrogenative silylation 

of alcohols and the coordinative saturation of ToMZnH, we have examined the ToMZnH- 

catalyzed dehydrocoupling reactions in greater detail. The phenolic alcohols had shown the 

greatest dependence of product identity on concentration of substrates, and therefore we 

chose 3,5-C6H3Me2OH and PhMeSiH2 as the substrates to study the dehydrocoupling 

reaction mechanism to identify the factors that control relative rates of reactivity. 

Additionally, we have studied isolated 130 and ToMZnOC6H3Me2 (4) as likely intermediates 

in the dehydrocoupling of 3,5-C6H3Me2OH and organosilanes to test their role in the catalytic 

cycle. 

Reaction of ToMZnH and 3,5-dimethylphenol in benzene readily provides 4 (eq 4), which is 

isolated and fully characterized by spectroscopic, analytical and X-ray diffraction techniques 

(fig. S-7). 
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The reaction between ToMZnOC6H3Me2 and PhMeSiH2 (benzene-d6, 60 °C) affords a 

mixture of PhMeHSi(OC6H3Me2) and PhMeSi(OC6H3Me2)2 in a 61:39 ratio. Additionally, 

the compounds 1 and 4 show the same activity under catalytic conditions for organosilane 

phenolysis. Thus, stoichiometric steps have been observed that support a two-step catalytic 

mechanism for dehydrocoupling of organosilanes and 3,5-dimethylphenol. Related steps 

have also been observed for the coupling of organosilanes and tert-butanol. 

To provide further support for the proposed mechanism, the concentrations of species in the 

catalytic reactions were monitored by 1H NMR spectroscopy over the reaction course. Under 

initial conditions of 200 mM [HOC6H3Me2], 130 mM [PhMeSiH2] with 1.5−12 mol % 

ToMZnH in toluene-d8 at 96.3 °C (calibrated), plots of [HOC6H3Me2] versus time are linear, 

and curves of [PhMeSiH2] versus time follow an exponential decay over three half-lives 

(nonlinear least-squares analysis provides kobs for a particular catalyst concentration). Several 

reactions were attempted with a range of concentrations of phenol with constant 1; kobs does 

not change with [HOC6H3Me2] ranging from 0.2−1.2 M. This lack of dependence on phenol 

concentration confirms its zero-order contribution to the rate law with PhMeSiH2 as the 

limiting reagent. In contrast, a plot of kobs versus [ToMZnH] shows a linear correlation 

(Figure 2) giving k’obs
(PhMeSiH2) = 8.8 ± 0.3 × 10−2 M−1 s−1.  

(4) 
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Figure 2. Plot of k'obs versus [ToMZnH] for the reaction of 3,5-dimethylphenol with 
PhMeSiH2 and PhMeSiD2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Under these conditions, an empirical rate law is: 

− d[PhMeSiH2]/dt = k’obs
(PhMeSiH2) [ToMZnH]1[PhMeSiH2]1[Phenol]0 

This empirical rate law is consistent with the mechanism of Scheme 1, with the turnover-

limiting step (k2) involving interaction of PhMeSiH2 and the catalyst. The experimentally 

determined k’obs corresponds to the rate constant k2 for the interaction of 4 and PhMeSiH2. 

The only ToMZn-species observed under these reaction conditions is 4. This observation and 

the empirical rate law indicate that 4 is the resting state for the catalysis at 96 °C in the 
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presence of excess 3,5-dimethylphenol. Thus, the rate constant (k1) for the hydrogen 

elimination reaction of 1 and HOC6H3Me2 is greater than k2. Additionally, the kinetics 

reveals that under these conditions, neither step of the cycle is reversible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Proposed catalytic for ToMZnH-catalyzed dehydrocoupling of PhMeSiH2 and 3,5-
dimethylphenol. 

        To further probe the turnover-limiting step, we determined the empirical rate law and 

rate constant for the catalytic reaction of PhMeSiD2 and HOC6H3Me2. At 96.3 °C, 

k’obs
(PhMeSiD2) is 6.7 ± 0.7 × 10−2 M−1s−1. The ratio of k’obs

(PhMeSiH2) to k’obs
(PhMeSiD2), and hence 

the kinetic isotope effect (kH/kD) was calculated to be 1.3(1). This value suggests that the 

Si−H (or Si−D) bond is broken during the turnover-limiting step and is consistent with a 

four-centered transition state for Si−O bond formation where the ∠Zn−H−Si is nonlinear. 
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However, this relatively small value could also be interpreted as resulting from a (large) 

secondary isotope effect. 

Therefore, the nature of the proposed turnover-limiting step was further investigated by 

measurement of the rate law for the stoichiometric reaction of PhMeSiH2 and 4. Under 

pseudo-first order conditions (10−20 equiv of PhMeSiH2 at 96 °C), the reaction is too fast to 

be easily monitored by 1H NMR spectroscopy. Instead, we measured the (stoichiometric) 

second-order rate constants from 24 to 61 °C under pseudo-first order conditions and 

calculated the rate constant at 96 °C using the Eyring equation. This calculated value, 0.1 

M−1s−1, is close to the value measured under catalytic conditions (0.088 (3) M−1s−1). Thus, 

the stoichiometric Si−O bond forming reaction of ToMZnOC6H3Me2 and PhMeSiH2 is 

chemically and kinetically competent for its proposed role in the catalytic cycle. The other 

step, namely, interaction of ToMZnH and HOC6H3Me2, is rapid at room temperature (t1/2 < 5 

min), and this step is also catalytically competent and consistent with the proposed 

mechanisms. 

The activation parameter values obtained from the Eyring analysis, ΔH =13 kcal mol−1 and 

ΔS = − 27 cal mol−1K−1, further support a highly organized transition state for Si−O bond 

formation. Related four-center transition states that involve transfer of a hydrogen atom from 

silicon to a metal center have values for activation parameters with relatively low ΔH≠ and 

highly negative ΔS≠, as well as isotope effects that range from unity to about 3. For example, 

the reaction of CpCp*ClHfSiH2Ph and PhSiH3 or PhSiD3 gives CpCp*ClHf−H (or [Hf]−D) 

with a kH/kD = 2.7(2) (at 70 °C) and activation parameters ΔH≠ = 19 kcal mol−1 and ΔS≠ = − 

33 e.u..32 The isotope effect for the related reaction of Cp*2ScMe with Ph2SiH2 or Ph2SiD2 
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that gives Ph2MeSiH or Ph2MeSiD is 1.15(5), and the related value for the reaction of 

[DADMB]YMe(THF) and PhMeSiH2 is 1.1(1) (at 298 K; DADMB = 2,2’-bis(tert-

butyldimethysilylamido)-6,6’-dimethylbiphenyl).33,34 Related four-centered transition states 

are proposed in titanium-catalyzed hydrosilylation of ketones,31 in zinc-catalyzed 

hydrosilylations, and in gold and copper-catalyzed silane alcoholyses,18,20,35although isotope 

effects for Si−O bond formation are not reported. Thus, the studies reported here for the 

ToMZnH-catalyzed reaction, including kinetics, isolable intermediates, stoichiometric 

reactions, and rate constants provide substantial support for the proposed two-step catalytic 

mechanism as well as concerted Si−H bond cleavage/Si−O bond formation previously 

suggested for in situ generated zinc, copper, and gold catalysts. 

Conclusion. 

We are currently working to identify relative rates of Si−O bond formation for reactions of 

isolated zinc alkoxides and zinc aryloxides with a range of organosilanes to better understand 

the selectivity of these reactions and to better characterize the bond cleavage and formation 

steps. Because the isolable ToMZnH can be reacted with aliphatic alcohols and phenols, the 

relative rate law(s) and rates of these reactions will also be used to probe the overall 

mechanism of catalytic silane alcoholysis and develop new bond-forming catalytic 

conversions. 
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Experimental. 

 General.  

All reactions were performed under a dry argon atmosphere using standard Schlenk 

techniques or under a nitrogen atmosphere in a glovebox, unless otherwise indicated. Water 

and oxygen were removed from benzene, toluene, pentane, diethyl ether, and tetrahydrofuran 

solvents using an IT PureSolv system. Benzene-d6 and toluene-d8 were heated to reflux over 

Na/K alloy and vacuum-transferred. PhMeSiH2 and Ph2SiH2 were synthesized by LiAlH4 

reduction of the corresponding chlorosilanes and purified by distillation and stored over 4 Å 

molecular sieves in the glovebox. PhMeSiD2 was synthesized by LiAlD4 reduction of 

PhMeSiCl2. BnMe2SiH was purchased from Gelest and stored over 4 Å molecular sieves in 

the glovebox. All the liquid alcohols (MeOH, EtOH, iPrOH, tBuOH) were distilled from 

CaH2 prior to use and stored over 4 Å molecular sieves in the glovebox. Pinacol and 2,4-

pentanediol were purchased from Sigma-Aldrich and used as received. 3,5-Dimethylphenol 

was purchased from Sigma-Aldrich, purified by sublimation, and stored in the glovebox. 

Procedures for ToMZnH- catalyzed silyl ethers syntheses are given below with the 

appropriate literature citations for spectral data. 1H, 13C{1H}, and 11B NMR spectra were 

collected on a Bruker DRX 400 spectrometer. 15N chemical shifts were determined by 1H-15N 

HMBC experiments on a Bruker Avance II 700 spectrometer with a Bruker Z-gradient 
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inverse TXI 1H/13C/15N 5mm cryoprobe; 15N chemical shifts were originally referenced to an 

external liquid NH3 standard and recalculated to the CH3NO2 chemical shift scale by adding -

381.9 ppm. 29Si{1H} NMR were collected using a 400 MHz Varian NMR spectrometer. 

Elemental analyses were performed using a Perkin-Elmer 2400 Series II CHN/S by the Iowa 

State Chemical Instrumentation Facility. X- ray diffraction data was collected on a Bruker 

APEX II diffractometer. 

ToMZnH (1) Single flask preparation. HToM (0.245 g, 0.639 mmol) and dimethylzinc (0.32 

mL; 2 M in toluene) were mixed in benzene and stirred for 12 h at room temperature. 

Methanol (40 µL, 0.989 mmol) was added to the reaction, and the resulting solution was 

stirred for 24 h at room temperature. PhMeSiH2 (0.20 mL, 1.456 mmol) was then added. The 

reaction was stirred for 1 h at room temperature and then filtered to remove minor impurities. 

As the filtrate was concentrated, white crystalline ToMZnH precipitated. Evaporation to 

dryness, followed by pentane washes (3 × 5 mL) and further drying yielded crystalline 

ToMZnH (0.260 g, 0.579 mmol, 90.6%). Spectroscopic data are identical to those of 

previously characterized ToMZnH.1 

ToMZnMe (3). This compound was prepared in the same quantity as ToMZnH above. HToM 

(0.245 g, 0.639 mmol) and dimethylzinc (0.32 mL; 2 M in toluene) were mixed in benzene 

and stirred for 12 h at room temperature. Evaporation of the volatile components gave a 

white solid, which was then washed with pentane (3 × 5 mL) affording crystalline, 

analytically pure ToMZnMe as white solid. X-ray quality single crystals were grown from a 

concentrated toluene solution of 3 at – 30 °C. 1H NMR (400 MHz, benzene-d6): δ 0.21 (s, 3 

H, ZnMe), 1.02 (s, 18 H, CNCMe2CH2O), 3.49 (s, 6 H, CNCMe2CH2O), 7.33 (t, 3JHH = 4.0 
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Hz, 1 H, para-C6H5), 7.51 (t, 3JHH = 4.0 Hz, 2 H, meta-C6H5), 8.32 (d, 3JHH = 4.0 Hz, 2 H, 

ortho-C6H5). 13C{1H} NMR (175 HMz, benzene-d6): δ -16.86 (ZnCH3), 28.29 

(CNCMe2CH2O), 65.68 (CNCMe2CH2O), 80.81 (CNCMe2CH2O), 126.18 (para-C6H5), 

127.21 (meta-C6H5), 136.46 (ortho-C6H5), 142.98 (br, ipso-C6H5), 189.99 (br, 

CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ − 17.2. 15N{1H} NMR: δ -155.8. IR 

(KBr, cm−1): 2967 (s), 2931 (m), 2897 (m), 1605 (s, νCN), 1460 (m), 1385 (m), 1366 (s), 1351 

(m), 1270 (s), 1251 (m), 1193 (s), 1161 (s), 958 (s), 894 (w), 818 (w), 748 (m), 709 (s), 673 

(m), 658 (m). Anal. Calcd. for C22H32BN3O3Zn: C, 57.11; H, 6.97; N, 9.08. Found: C, 57.20; 

H, 7.17; N, 9.17. mp 217-220 °C. 

ToMZn(O-3,5-C6H3Me2) (4). ToMZnH (0.128 g, 0.285 mmol) and 3,5-Me2C6H3OH (0.035 g, 

0.286 mmol) were dissolved in benzene (15 mL) and stirred for 1 h. Then, the volatiles 

materials were removed under reduced pressure. The resulting white solid was washed with 

pentane (3 × 5 mL) and dried under vacuum, affording analytically pure ToMZn(O-3,5-

Me2C6H3) (0.390 g, 0.749 mmol, 89.4%) as a white powdery solid. X-ray quality single 

crystals were grown by slow pentane diffusion into a concentrated toluene/THF solution of 

ToMZn(O-3,5-C6H3Me2) at − 30 °C. 1H NMR (400 MHz, benzene-d6): δ 1.07 (s, 18 H, 

CNCMe2CH2O), 2.36 (s, 6 H, C6H3Me2), 3.43 (s, 6 H, CNCMe2CH2O), 6.51 (s, 1 H, para-

C6H3Me2), 6.87 (s, 2 H, ortho-C6H3Me2), 7.36 (t, 3JHH = 7.4 Hz, 1 H, para-C6H5), 7.54 (t, 

3JHH = 7.4 Hz, 2 H, meta-C6H5), 8.28 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} NMR 

(100 MHz, benzene-d6): δ 22.09 (C6H3Me2), 28.16 (CNCMe2CH2O), 65.80 (CNCMe2CH2O), 

81.25 (CNCMe2CH2O), 118.00 (para-C6H3Me2), 118.49 (ortho-C6H3Me2), 126.57 (para-

C6H5), 127.40 (meta-C6H5), 136.28 (ortho-C6H5), 138.89 (meta-C6H3Me2), 142.12 (br, ipso-



www.manaraa.com

	   77	  

C6H5), 168.30 (ipso-C6H3Me2), 191.12 (br, CNCMe2CH2O). 11B NMR (128 MHz, benzene-

d6): δ − 18.2. 15N{1H} NMR (71 MHz, benzene-d6): δ − 160.5. IR (KBr, cm−1): 3083 (w), 

3020 (w), 2971 (s), 2929 (w), 2869 (w), 1585 (s, νC=N), 1494 (w), 1464 (s), 1432 (w), 1366 

(m), 1355 (m), 1345 (m), 1336 (w), 1278 (s), 1198 (s), 1172 (s), 1037 (w), 990 (m), 959 (s), 

896 (w), 858 (m), 843 (w), 819 (s), 747 (m), 708 (s), 694 (w), 666 (s). Anal. Calcd. for 

C29H38BN3O4Zn: C, 61.23; H, 6.73; N, 7.39. Found: C, 61.24; H, 6.47; N, 7.38. mp 259-

262 °C. 

PhMeHSiOMe. PhMeSiH2 (0.691 g, 5.65 mmol) and methanol (0.091 g, 2.83 mmol) were 

added to ToMZnH (0.012 g, 0.027 mmol, 0.95 mol%) dissolved in benzene (18 mL). This 

solution was degassed with two freeze-pump-thaw cycles, sealed in a Teflon-valved flask, 

and heated at 45 °C for 10 h. The reaction mixture was cooled to room temperature and 

filtered through a short plug of celite. The celite plug was further washed with diethyl ether 

(3 × 10 mL), and the filtrate and washings were combined. The volatile solvents were 

removed to obtain a colorless liquid. Subsequent fractional distillation of the colorless liquid 

provided PhMeHSiOMe (0.39 g, 2.56 mmol, 90.7%) as the sole isolated product. 1H NMR 

(400 MHz, CDCl3): δ 0.52 (d, 3JHH = 3.2 Hz, 3 H, SiMe), 3.56 (s, 3 H, OMe), 5.06 (m, 3JHH = 

2.8 Hz, 1JSiH = 208 Hz, 1 H, SiH), 7.45 (m, 3 H, para and meta-C6H5), 7.67 (m, 2 H, ortho-

C6H5). 13C{1H} NMR (100 MHz, CDCl3): -2.96 (SiMe), 52.17 (OMe), 128.21 (meta-C6H5), 

130.38 (para-C6H5), 134.10 (ortho-C6H5), 135.55 (ipso-C6H5). 29Si{1H} NMR (79.5 MHz, 

CDCl3): δ 0.79. EI-MS: C9H14SiO m/e 152 (M+). 

PhMeHSiOEt. A similar procedure as described for PhMeHSiOMe was used. PhMeSiH2 

(0.667 g, 5.46 mmol) and ethanol (0.210 g, 4.55 mmol) were added to ToMZnH (0.009 g, 
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0.020 mmol, 0.44 mol%) dissolved in benzene (18 mL). This solution was degassed with two 

freeze-pump-thaw cycles, sealed in a Teflon-valved flask, and heated to 60 °C for 24 h. 

Workup provided PhMeHSiOEt (0.71 g, 4.27 mmol, 93.7%) as the sole product. The product 

was characterized using 1H, 13C and 29Si NMR spectroscopy and mass spectrometry; 

PhMeHSiOEt was previously reported, but spectral characterization was not given.2 1H NMR 

(400 MHz, CDCl3): δ 0.47 (d, 3JHH = 2.8 Hz, 3 H, SiMe), 1.22 (t, 3JHH = 7.2 Hz, 3 H, 

OCH2CH3), 3.75 (q, 3JHH = 7.2 Hz, 2 H, OCH2CH3), 5.02 (m, 3JHH = 2.8 Hz, 1JSiH = 208 Hz, 

1 H, SiH), 7.41 (m, 3 H, para, meta-C6H5), 7.62 (m, 2 H, ortho-C6H5). 13C{1H} NMR (100 

MHz, CDCl3): − 2.53 (SiMe), 18.30 (OCH2CH3), 60.23 (OCH2CH3), 128.12 (meta-C6H5), 

130.22 (para-C6H5), 134.00 (ortho-C6H5), 136.06 (ipso- C6H5). 29Si{1H} NMR (79.5 MHz, 

CDCl3): δ − 2.40. EI-MS: C9H14SiO m/e 166 (M+). 

PhMeHSiOiPr. A similar procedure as described for PhMeHSiOMe was used. PhMeSiH2 

(0.620 g, 5.07 mmol) and isopropanol (0.254 g, 4.23 mmol) were added to ToMZnH (0.010 g, 

0.022 mmol, 0.52 mol%) dissolved in benzene (18 mL). This solution was degassed with two 

freeze-pump-thaw cycles, sealed in a Teflon-valved flask, and heated to 95 °C for 24 h. 

Workup provided PhMeHSiOiPr (0.69 g, 3.83 mmol; 90.5%) as the sole product. 1H NMR 

(400 MHz, CDCl3): δ 0.46 (d, 3JHH = 2.8 Hz, 3 H, SiMe), 1.18 (d, 3JHH = 6.0 Hz, 3 H, 

OCHMe2), 1.21 (d, 3JHH = 6.0 Hz, 3 H, OCHMe2), 4.05 (m, 1 H, OCHMe2), 5.05 (m, 3JHH = 

2.8 Hz, 1JSiH = 208 Hz, 1 H, SiH), 7.41 (m, 3 H, para, meta-C6H5), 7.63 (m, 2 H, ortho-C6H5). 

13C{1H} NMR (100 MHz, CDCl3): − 1.92 (SiMe), 25.43 (OCHMe2), 25.57 (OCHMe2), 67.06 

(OCHMe2), 128.13 (meta- C6H5), 130.18 (para-C6H5), 134.07 (ortho-C6H5), 136.65 (ipso-

C6H5). 29Si{1H} NMR (79.5 MHz, CDCl3): δ − 5.41. EI-MS: C10H16SiO m/e 180 (M+). 
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PhMeHSiOtBu. A similar procedure as described for the synthesis of PhMeHSiOMe was 

used. PhMeSiH2 (0.625 g, 5.11 mmol) and tert-butanol (0.316 g, 4.26 mmol) were 

successively added to ToMZnH (0.014 g, 0.031 mmol, 0.73 mol%) dissolved in benzene (18 

mL). This mixture was degassed with two freeze-pump-thaw cycles, sealed in a Teflon-

valved flask, and heated to 95 °C for 36 h. Workup provided methylphenylsilyl-tert-butoxide 

(0.76 g, 91.6%) as the sole product.3 1H NMR (400 MHz, CDCl3): δ 0.43 (d, 3JHH = 3.2 Hz, 3 

H, SiMe), 1.31 (s, 9 H, OCMe3), 5.16 (m, 3JHH = 2.8 Hz, 1JSiH = 208 Hz, 1 H, SiH), 7.39 (m, 

3 H, para, meta-C6H5), 7.63 (m, 2 H, ortho-C6H5). 13C{1H} NMR (100 MHz, CDCl3): -0.15 

(SiMe), 31.68 (OCMe3), 73.29 (OCMe3), 128.02 (meta-C6H5), 129.82 (para-C6H5), 133.92 

(ortho-C6H5), 138.22 (ipso-C6H5). 29Si{1H}NMR (79.5 MHz, CDCl3): δ − 14.88. EI-MS: 

C11H18SiO m/e 194 (M+). 

BnMe2SiOMe. A similar procedure as described for the preparation of PhMeHSiOMe was 

used. BnMe2SiH (0.861 g, 5.73 mmol) and methanol (0.153 g, 4.78 mmol) were added to 

ToMZnH (0.006 g, 0.013 mmol, 0.27 mol %) dissolved in benzene (18 mL). This solution 

was degassed with two freeze-pump-thaw cycles, sealed in a Teflon-valved flask, and heated 

to 60 °C for 10 h, which provided BnMe2Si-OMe (0.84 g, 97.7%) as the sole product. 1H 

NMR (400 MHz, CDCl3): δ 0.01 (s, 6 H, SiMe2), 2.11 (s, 2 H, PhCH2), 3.33 (s, 3 H, OMe), 

6.99 (m, 3 H, para, meta-C6H5), 7.13 (m, 2 H, ortho-C6H5). 13C{1H} NMR (100 MHz, 

CDCl3): -2.76 (SiMe2), 26.39 (OMe), 50.75 (PhCH2), 124.40 (para-C6H5), 128.47 (meta-

C6H5), 128.49 (ortho-C6H5), 139.16 (ipso-C6H5). 29Si{1H} NMR (79.5 MHz, CDCl3): δ 

16.70. EI-MS: C10H16SiO m/e 180 (M+). 

PhMeHSi(O-3,5-C6H3Me2). A similar procedure as described for PhMeHSiOMe was used. 
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PhMeSiH2 (1.308 g, 10.70 mmol) and 3,5-Me2C6H3OH (0.261 g, 2.14 mmol) were added to 

ToMZnH (0.007 g, 0.016 mmol, 0.75 mol %) dissolved in benzene (18 mL). This reaction 

mixture was degassed with two freeze-pump-thaw cycles, sealed in a Teflon-valved flask, 

and heated to 50 °C for 10 h. Workup provided PhMeHSi(O-3,5-C6H3Me2) (0.463 g, 89.2%) 

as the sole product. 1H NMR (400 MHz, CDCl3): δ 0.66 (d, 3JHH = 2.8 Hz, 3 H, SiMe), 2.32 

(s, 6 H, C6H3Me2), 5.43 (m, 3JHH = 2.8 Hz, 1JSiH = 208 Hz, 1 H, SiH), 6.64 (s, 2 H, ortho-

C6H3Me2), 6.70 (s, 1 H, para-C6H3Me2) 7.49 (m, 3 H, meta, para-C6H5), 7.74 (m, 2 H, ortho-

C6H5). 13C{1H} NMR (100 MHz, CDCl3): -2.76 (SiMe2), 26.39 (SiOCH3), 50.75 (PhCH2), 

117.19 (ortho- C6H3Me2), 123.73 (para-C6H3Me2), 128.26 (meta-C6H5), 130.56 (para-C6H5), 

134.06 (ortho- C6H5), 137.27 (ipso-C6H5), 139.43 (meta-C6H3Me2), 155.44 (ipso-C6H3Me2). 

29Si{1H} NMR (79.5 MHz, CDCl3): δ -11.19. EI-MS: C15H18SiO m/e 242 (M+). 

PhMeSi(O-3,5-C6H3Me2)2. A similar procedure as described for PhMeHSiOMe was used. 

PhMeSiH2 (0.583 g, 4.77 mmol) and 3,5-Me2C6H3OH (1.748 g, 14.31 mmol) were added to 

ToMZnH (0.015 g, 0.033 mmol, 0.69 mol %) dissolved in benzene (18 mL). This solution 

was degassed with two freeze-pump-thaw cycles, sealed in a Teflon-valved flask, and heated 

to 95 °C for 24 h. Workup provided PhMeSi(O-C6H3Me2)2 (1.57 g, 90.8%) as the sole 

product. 1H NMR (400 MHz, CDCl3): δ 0.67 (s, 3 H, SiMe), 2.33 (s, 12 H, C6H3Me2), 6.73 (s, 

6 H, C6H3Me2), 7.51 (m, 3 H, meta, para-C6H5), 7.13 (m, 2 H, ortho-C6H5). 13C{1H} NMR 

(100 MHz, CDCl3): -3.15 (SiMe), 21.46 (C6H3Me2), 117.82 (ortho-C6H3Me2), 124.02 (para-

C6H3Me2), 128.17 (meta- C6H5), 130.73 (para-C6H5), 133.62 (ipso-C6H5), 134.29 (ortho-

C6H5), 139.34 (meta-C6H3Me2), 154.21 (ipso-C6H3Me2). 29Si{1H} NMR (79.5 MHz, CDCl3): 

δ -21.59. EI-MS: C23H36SiO2 m/e 362 (M+). 
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2,4,6-trimethyl-2-phenyl-1,3-dioxa-2-silacyclohexane. A similar procedure as described for 

PhMeHSiOMe was used. PhMeSiH2 (0.864 g, 7.07 mmol) and 2,4-pentanediol (0.870 g, 8.35 

mmol) were added to ToMZnH (0.004 g, 0.009 mmol, 0.13 mol %) dissolved in benzene (18 

mL). This reaction mixture was degassed with two freeze-pump-thaw cycles, sealed in a 

Teflon- valved flask, and heated to 80 °C for 6 h. Workup provided 2,4,6-trimethyl-2-phenyl-

1,3-dioxa-2-silacyclohexane (three diastereomers in a 1: 2.27: 2.11 ratio) (1.53 g, 96.8%).4 

1H NMR (400 MHz, CDCl3): 0.39-0.45 (m, 3 H), 121-1.37 (m, 6 H), 1.54-1.90 (m, 2 H), 

4.06-4.53 (m, 2 H), 7.40 (m, 3 H, meta, para-C6H5), 7.65 (m, 2 H, ortho-C6H5). 13C{1H} 

NMR (100 MHz, CDCl3): - 3.35, − 1.28, − 0.32, 23.58, 23.68, 23.74, 24.37, 24.56, 24.71, 

42.85, 45.93, 65.49, 66.63, 67.22, 69.78, 69.92, 127.97, 128.14, 130.11, 130.14, 130.44, 

133.58, 133.83, 133.96, 135.59, 135.80, 137.22. 29Si{1H} NMR (79.5 MHz, CDCl3): − 15.31, 

− 13.81, − 12.97. EI-MS: C12H18SiO2 m/e 222 (M+). 

2,4,4,5,5-pentamethyl-2-phenyl-1,3-dioxa-2-silacyclopentane. PhMeSiH2 (0.857 g, 7.01 

mmol) and pinacol (0.994 g, 8.41 mmol) were added to ToMZnH (0.004 g, 0.009 mmol, 0.13 

mol %) dissolved in benzene (18 mL). This solution was degassed with two freeze-pump-

thaw cycles, sealed in a Teflon-valved flask, and heated to 95 °C for 60 h. Workup provided 

2,4,4,5,5-pentamethyl-2-phenyl-1,3-dioxa-2-silacyclopentane (1.53 g, 92.2%) as the sole 

product.4 1H NMR (400 MHz, CDCl3): δ 0.51 (s, SiMe), 1.26 (s, 6 H, CMe2), 1.34 (s, 6 H, 

CMe2), 7.39 (m, 3 H, meta, para-C6H5), 7.67 (m, 2 H, ortho-C6H5). 13C{1H} NMR (100 MHz, 

CDCl3): δ - 0.43 (SiMe), 25.91 (CMe2), 25.95 (CMe2), 81.99 (CMe2), 128.03 (meta-C6H5), 

130.41 (para-C6H5), 133.74 (ortho-C6H5), 135.62 (ipso-C6H5). 29Si{1H} NMR (79.5 MHz, 

CDCl3): δ 3.87. EI-MS: C13H20SiO2 m/e 236 (M+). 
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4,6-dimethyl-2,2-diphenyl-1,3-dioxa-2-silacyclohexane. Ph2SiH2 (0.917 g, 4.98 mmol) and 

2,4-pentanediol (0.613 g, 5.89 mmol) were added to ToMZnH (0.004 g, 0.009 mmol, 0.18 

mol %) dissolved in benzene (18 mL). The resulting solution was degassed with two freeze-

pump- thaw cycles, sealed in a Teflon-valved flask, and heated to 60 °C for 6 h. Workup 

provided 4,6-dimethyl-2,2-diphenyl-1,3-dioxa-2-silacyclohexane as two diastereomers in 

1:1.15 ratio (1.32 g, 4.64 mmol, 93.0%) as the sole products.4 1H NMR (400 MHz, CDCl3): δ 

1.16 (d, 3JHH = 6.4 Hz, 6 H, minor diastereomer MeCHCH2CHMe), 1.19 (d, 3JHH = 6.4 Hz, 6 

H, major diastereomer MeCHCH2CHMe), 1.49 (m, 2 H, minor diastereomer 

MeCHCH2CHMe), 1.69 (m, 2 H, major diastereomer MeCHCH2CHMe), 4.12 (m, 2 H, 

minor diastereomer MeCHCH2CHMe), 4.39 (m, 2 H, major diasteromer MeCHCH2CHMe), 

7.22 (m, 12 H, C6H5), 7.54 (m, 8 H, C6H5). 13C{1H} NMR (100 MHz, CDCl3): δ 23.79 

(MeCHCH2CHMe), 24.75 (MeCHCH2CHMe), 43.10 (MeCHCH2CHMe), 46.17 

(MeCHCH2CHMe), 67.50 (MeCHCH2CHMe), 70.41 (MeCHCH2CHMe), 127.98 (meta-

C6H5), 128.19 (meta-C6H5), 130.51 (para-C6H5), 130.82 (para-C6H5), 133.49 (ipso-C6H5), 

133.64 (ipso-C6H5), 134.73 (ortho-C6H5), 135 (ortho-C6H5). 29Si{1H} NMR (79.5 MHz, 

CDCl3): δ -29.79 (major diastereomer), -27.74 (minor diastereomer). EI-MS: C17H20SiO2 

m/e 284 (M+). 

4,4,5,5-tetramethyl-2,2-diphenyl-1,3-dioxa-2-silacyclopentane. Ph2SiH2 (0.595 g, 3.23 

mmol) and pinacol (0.462 g, 3.91 mmol) were added to ToMZnH (0.004 g, 0.009 mmol, 0.28 

mol %) dissolved in benzene (18 mL). This solution was degassed with two freeze-pump-

thaw cycles, sealed in a Teflon-valved flask, and heated to 95 °C for 60 h. Workup provided 

4,4,5,5- tetramethyl-2,2-diphenyl-1,3-dioxa-2-silacyclopentane (0.882 g, 2.96 mmol, 91.5%) 
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as the sole product.4 1H NMR (400 MHz, CDCl3): δ 1.39 (s, 12 H, CMe2), 7.40 (t, 3JHH = 7.2 

Hz, 4 H, meta- C6H5), 7.47 (t, 3JHH = 7.2 Hz, 2 H, para-C6H5), 7.73 (d, 3JHH = 7.6 Hz, 4 H, 

ortho-C6H5). 13C{1H} NMR (100 MHz, CDCl3): δ 26.12 (CMe2), 82.43 (CMe2), 127.93 

(meta-C6H5), 130.73 (para-C6H5), 133.51 (ipso-C6H5), 135.10 (ortho-C6H5). 29Si{1H} NMR 

(79.5 MHz, CDCl3): δ - 10.61. EI-MS: C18H22SiO2 m/e 298 (M+). 

General procedure for NMR-scale catalytic dehydrocoupling. In a typical experiment, 

ToMZnH catalyst (0.009 mmol), alcohol (0.18 mmol), and organosilane (0.18 mmol) were 

dissolved in 0.7 mL benzene-d6 and placed in a NMR tube with a resealable Teflon valve. 

The tube was sealed, and placed in an oil bath that was preheated to the necessary 

temperature (45 – 150 °C). The reaction was monitored at regular intervals by 1H NMR 

spectroscopy. 

General description of 1H NMR kinetic experiments. All kinetics measurements were 

conducted by monitoring the reactions with 1H NMR spectroscopy using a Bruker DRX-400 

spectrometer. Prior to the experiments, a toluene-d8 solution containing known 

concentrations of cyclooctane (16.04 mM, as an internal standard), 3,5-dimethylphenol 

(0.990 M) and phenylmethylsilane (0.646 M) was prepared. The samples were prepared by 

adding a measured volume (0.6 mL) of this solution ToMZnH (1) giving catalyst 

concentrations ranging from 2.44 mM to 14.18 mM. The NMR probe was pre-heated to 

369.3 K, and the temperature was calibrated using an 80% ethylene glycol sample in 20% 

DMSO-d6. Single scan spectra were acquired automatically at preset time intervals. The 

concentrations of the catalyst, substrates and products were determined by comparison of 

corresponding integrated resonances to the known concentration of cyclooctane. The peaks 
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were integrated relative to cyclooctane as an internal standard. Pseudo-first order rate 

constants (kobs) were obtained by a nonweighted linear least- squares fit of the data to the 

pseudo-first order rate law, ln[PhMeSiH2] = ln[PhMeSiH2]0 + kobst (Figure S1). The second 

order rate constant k'obs was determined by measuring kobs for several catalyst concentrations. 

Nonweighted linear least-square fit of the data to the equation kobs = C + k'obs[ToMZnH] 

provided the desired second order rate constant (Figure S2). 
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� S-9 

Figure S1. Plots of ln[PhMeSiH2] versus time for the ToMZnH (1)-catalyzed reaction of 3,5-

dimethylphenol and PhMeSiH2 at 96.3 °C in toluene-d8 (1.53 equiv. of 3,5-dimethylphenol is 

present with respect to PhMeSiH2). The catalyst concentration was varied from 2.4 mM to 11.7 

mM.  
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� S-10 

Figure S2. Plots of ln[PhMeSiD2] versus time for the ToMZnH (1)-catalyzed reaction of 3,5-

dimethylphenol (0.974 M) and PhMeSiD2 (0.636 M) at 96.3 °C in toluene-d8 (1.53 equiv. of 3,5-

dimethylphenol is present with respect to PhMeSiD2). The catalyst concentration was varied 

from 2.26 mM to 15.69 mM.  
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� S-11 

 

Figure S3. Plot of kobs versus [To
M

ZnH] concentration showing first-order dependence on 

catalyst concentration. Each kobs[PhMeSiH2] or kobs[PhMeSiD2] is determined from the linear 

least squares regression analysis in Figures S1 and S2. From the slope of the curves shown 

below, k'obs
H
/k'obs

D
 = 1.3(1). 
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� S-12 

Figure S4. Pseudo-first order plot of ln[ToMZnOC6H3Me] vs. time for five [PhMeSiH2] at 61 °C. 

The curvers are linear-least squares best fits of the equations below to the data. 
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� S-13 

Figure S5. Plot of kobs vs [PhMeSiH2] from the plot in Figure S4 for determining the second-

order rate constant for the interaction of ToMZnOC6H3Me2 and PhMeSiH2 at 61 °C. This plot is 

representative of data acquired at 24, 36, 47, and 54 °C used in the Eyring plot of Figure S6. 
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� S-14 

Figure S6. Plot of ln(k/T) vs. 1/T used to calculate activation parameters and the stoichiometric 

second-order rate constant for the reaction of ToMZnOC6H3Me2 and PhMeSiH2 at 96 °C.  
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Figure S-7. ORTEP diagram of ToMZnOC6H3Me2 (4) drawn with ellipsoids at 50% 
probability. Hydrogen atoms are not shown for clarity. 
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Abstract. 

  Metal alkylperoxides are remarkable, highly effective, yet often thermally unstable, 

oxidants that may react through a number of possible pathways including O–O homolytic 

cleavage, M–O homolytic cleavage, nucleophilic O-atom transfer, and electrophilic O-atom 

transfer. Here we describe a series of zinc alkyl compounds of the type ToMZnR (ToM = 

tris(4,4-dimethyl-2-oxazolinyl)phenylborate; R = Et, n-C3H7, i-C3H7, t-Bu) that react with O2 

at 25 °C to form isolable monomeric alkylperoxides ToMZnOOR in quantitative yield. The 

series of zinc alkylperoxides is crystallographically characterized, and the structures show 

systematic variations in the Zn–O–O angle and O–O distances. The observed rate law for the 

reaction of ToMZnEt (2) and O2 is consistent with a radical chain mechanism, where the rate-

limiting SH2 step involves the interaction of •OOR and ToMZnR. In contrast, ToMZnH and 

ToMZnMe are unchanged even to 120 °C under 100 psi of O2 and in the presence of active 

radical chains (e.g., •OOEt). This class of zinc alkylperoxides is unusually thermally robust, 

in that the compounds are unchanged after heating at 120 °C in solution for several days. Yet, 

these compounds are reactive as oxidants with phosphines. Additionally, an unusual 

alkylperoxy group transfer to organosilanes affords ToMZnH and ROOSiR3′. 
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Introduction. 

Reactions of alkylzinc reagents and O2 provide environmentally and economically 

appealing approaches for useful oxidations, including epoxidations,1 hydroxylations,2 and 

peroxidations.3 In addition, alkylzinc compounds and their reactions with oxygen are 

fundamentally interesting because zinc occupies a unique position as a non-transition-

element and non-redox active divalent metal center whose chemistry nonetheless bears 

resemblance to the 3d metals. Reactions of (non-metallic) alkylboranes and O2 provide a 

close well-studied main group system and are proposed to follow a radical chain based on 

compelling evidence from kinetic studies, inhibition by radical traps such as galvinoxyl, 

stereochemical studies, and spectroscopic radical trapping experiments. Galvinoxyl similarly 

inhibits the reactions of ZnR2 and O2,4 and additional evidence for open-shell alkyl, alkoxy, 

and alkylperoxy intermediates is provided by EPR spectroscopy of trapped species.5 Oxygen 

initiates carbozincations, which is taken as evidence for a radical chain pathway.6,7 However, 

direct kinetic support for a radical chain reaction is limited,4 and a rate law for the reaction of 

alkylzinc compounds and O2 has not even been reported. 

Furthermore, detailed mechanistic investigations of reactions between organotransition-

metal compounds and O2 have provided a number of mechanisms, including the radical 

chain, O2 coordination/protonation, and direct insertion.8 Likewise, several pathways have 

been proposed for oxidations and metal alkylperoxide formations involving main group 

organometallic systems including zinc.4,5,9 At one extreme, •R or •OOR, formed through a 

radical chain, could directly oxidize an organic substrate. A radical chain could also give 

discrete [Zn]OOR intermediates, or alternatively such alkylperoxyzinc species could form 
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via electron transfer steps that excludes the chain reaction. Low temperature reactions of 

L2ZnR2 (L = 4-methylpyridine, 1,4-diazabutadiene, 2,2’-(1’-pyrrolinyl)pyrrole) and O2 that 

yield isolable and crystallographically-characterized alkylperoxyzinc species provide support 

for the latter mechanism.9c,10,11 However, the products of these reactions invariably contain 

multimetallic bridging alkoxides and/or alkylperoxides that can obscure the reaction 

mechanism. 

Highly reactive, monomeric alkylperoxy main-group compounds [M]OOR (M = Mg,12 

Zn,9c,10,13 Ga14, In15) have been prepared from organometallics and O2, although these 

systems are not amenable to quantitative kinetic investigations. For example, Parkin’s 

seminal Tpt-BuMgOOR compounds (Tpt-Bu = HB(N2C3H2t-Bu)3; R = Me, Et, i-C3H7, t-Bu) are 

proposed to form through a radical chain pathway based on galvinoxyl inhibition, and the 

relative rates follow the expected stability of •R.12 Interestingly, the analogous Tpt-BuZnR 

compounds and O2 do not provide detectable quantities of Tpt-BuZnOOR.16 The diketinimate 

ligand supports a monomeric aluminum tert-butylperoxide formed from alkane elimination 

with HOOt-Bu,17 but bridging alkylperoxy-magnesium and zinc species are formed from 

(diketinimato)MR and O2 [M = Mg, R = CH2Ph;12c M = Zn, R = Et].13 Monomeric structures 

may have enhanced kinetic stability because [M]R and [M]OOR can comproportionate to 

metal alkoxides.2 Still, monomeric, divalent, tetrahedral 3d transition-metal alkylperoxides, 

stabilized by bulky tris(pyrazolyl)borate ligands, decompose rapidly by homolysis at room 

temperature.18 

Kinetic investigations of reactions of [Zn]R and O2, then, may be simplified by monomeric 

alkylperoxyzinc products. The tridentate monoanionic tris(4,4-dimethyl-2-

oxazolinyl)phenylborate ligand [ToM] supports monomeric zinc hydride, alkyls, amides, and 
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alkoxides,19 and therefore this ancillary ligand might also stabilize zinc alkylperoxides. Here, 

we report the synthesis and characterization of a series of remarkably robust, monomeric, 

terminal ToMZnOOR compounds, kinetic studies of their formation from reactions of O2 and 

ToMZnR, as well as their slow decomposition and mild atom- and group transfer reactivity. 

 

Results and Discussion. 

Synthesis and characterization of ToMZnOOR (R = Et, n-C3H7, i-C3H7, t-Bu, CMe2Ph). 

A series of zinc alkyl compounds ToMZnR [R = Me (1),19b Et (2), n-C3H7 (3), i-C3H7 (4), t-

Bu (5), Ph (6), CH2Ph (Bn; 7)] are synthesized by metathesis from Tl[ToM] and ZnR2, 

protonolysis of ZnR2 with HToM, or salt elimination reaction of ToMZnCl and RLi.20 Some of 

these compounds are precursors to the targeted ToMZnOOR species. Compounds 1-7 are 

characterized by spectroscopic and analytical methods, as well as single crystal diffraction 

for all compounds except 4. Compounds 1-7 are all pseudo-C3v symmetric, as indicated by 

equivalent oxazoline groups in 1H and 13C NMR spectra. This spectroscopy is consistent with 

tridentate coordination of the tris(oxazolinyl)borate ligand to a single zinc center. 

Additionally, the 1H NMR spectra contained diagnostic upfield resonances assigned to the a-

CH of Zn-R moiety. These spectral data are consistent with the monomeric structures and 

four-coordinate zinc centers confirmed by single crystal X-ray diffraction studies (see Figure 

1 for 2 and Figures S-13 – S-16 in the Supporting Information (SI) for 3 and 5-7). 
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Figure 1. ORTEP diagram of ToMZnEt (2). Significant interatomic distances (Å): Zn1-C22, 1.994(2); Zn1-N1, 
2.058(1); Zn1-N2, 2.084(1); Zn1-N3, 2.075(1). Significant interatomic angles (°): Zn1-C22-C23, 118.7(1); N1-
Zn1-C22, 128.83(6); N2-Zn1-C22, 120.53(7); N3-Zn1-C22, 126.35(7). 

	  
Compounds 1-7 are resistant to thermal decomposition; for example, compound 2 was 

recovered quantitatively after thermolysis at 170 °C for 24 h in a sealed NMR tube. Thus, 

initiation of the radical chain mechanism, proposed for reactions with O2 (vide infra), is 

unlikely to involve spontaneous Zn-C bond homolysis in this system.10a 

Compounds 2-5 react with O2 (1 atm) in benzene-d6 over 3 days at room temperature, 6-8 h 

at 60 °C, or 30 min. at 120 °C to form ToMZnOOR [R = Et (8), n-C3H7 (9), i-C3H7 (10), t-Bu 

(11)] as the only species detected (eq. 1). These synthetic conditions highlight the remarkable 

thermal stability of 8-11 and strongly contrast the low temperature preparation and kinetic 

lability typically associated with 3d transition-metal and many main-group alkylperoxides. 

� S-19 

 
Figure S-12. ORTEP diagram of ToMZnEt (2). Ellipsoids are drawn at 35% probability. 
Hydrogen atoms and a toluene solvent molecule are not shown for clarity. 
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Compounds 8-11 form quantitatively, and evaporation of the reaction mixtures provide 

analytically pure products. The room temperature 1H NMR spectra of 8-11 contain 

resonances assigned to equivalent oxazoline groups that suggest pseudo-C3v symmetry for 

the ToM ligand. Downfield [Zn]OOCH resonances of 8-10 replace the upfield [Zn]CH 

signals of 2-4. However, tert-butyl 5 and tert-butylperoxy 11 are distinguished only by the 

13C{1H} NMR resonance for the CMe3 that shifts from 35.82 to 77.60 ppm.  

Oxygen NMR spectra were obtained from samples of 17O enriched 8-11 that were 

synthesized by reaction of compounds 2-5 and 17O2 in benzene-d6. The data is listed in Table 

1. Interestingly, the chemical shifts for the two resonances in 8-17O2 are similar to the shifts 

for 9-17O2. The chemical shift differences for the two resonances from 10 (Δ(δO) = δOa – 

 δOb = 111 ppm) are smaller than the differences in 8 and 9 (Δ(δO) = 150 and 155 ppm, 

respectively). The tert-butyl compound 11 give even smaller differences in 17O chemical 

shifts (Δ(δO) = 80 ppm). A similar observation was reported for TptBuMgOOR compounds, 

and by comparison we assign the downfield signal as [Zn]OOR, whereas the upfield 

resonance is attributed to [Zn]OOR. Interestingly, the ZnOOR signals are upfield relative to 

TptBuMgOOR chemical shifts, and the [Zn]OOR are downfield with respect to the 
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corresponding magnesium alkylperoxide. Perhaps the smaller peak separation for 

ToMZnOOR vs. TptBuMgOOR reflect the smaller electronegativity difference between Zn 

and O versus Mg and O. 

Table 1. 17O NMR chemical shifts of ToMZnOOR and TptBuMgOOR (vs. H2O).  

 δ([M]OOR) δ([M]OOR) 

ToMZnOOEt (8) 319 169 

TptBuMgOO(Et) a 407 130 

ToMZnOO(n-Pr) (9) 322 167 

ToMZnOO(i-Pr) (10) 304 193 

TptBuMgOO(i-Pr) a 373 159 

ToMZnOO(t-Bu) (11) 284 204 

TptBuMgOO(t-Bu) a 323 183 

a Data from from reference 12b. 

 

 Additionally, compounds 11 and ToMZnOOCMe2Ph (12) are readily prepared by reaction of 

ToMZnH (13) with HOOt-Bu and HOOCMe2Ph, respectively (eq. 2). 
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As noted in the Introduction, the related Tpt-BuZnEt is not oxidized by O2 even at 100 °C.21 

Surprisingly, only starting materials are evident after treatment of ToMZnMe (1) and 

ToMZnH (13) with O2 from room temperature to 120 °C and from 1 atm to 100 psi for 12 h. 

Addition of O2 to mixtures of 2 and 1 or 13 convert 2 to 8 while 1 or 13 remain unreacted. 

Alternatively, ToMZnPh (6) and ToMZnBn (7) react under O2 at 120 °C to form (k2-ToM)2Zn 

(14) in benzene over 48 h (see Figure S-22). Compound 14 is prepared independently from 

Tl[ToM] and 13. Neither light nor the radical initiator AIBN facilitates reactions of 1, 6, 7, 

and 13 with O2 to provide isolable organoperoxyzinc species. Reactions of oxygen and 

alkylzinc compounds are known to often yield alkoxides rather than peroxides, and the 

synthesis of alkylperoxyzinc compounds typically requires carefully controlled conditions to 

avoid formation of alkoxides.3,9,10 ToMZnOR are not formed in these reactions based on the 

combustion analyses of 8-12, their X-ray structures (see below), the poorer benzene 

solubility of ToMZnOR (R = Et, n-C3H7, i-C3H7) in comparison to 8-10, and the non-

equivalence of the 1H NMR spectra of 8-11 to spectra obtained from treatment of ToMZnH 

and ROH (R = Et, n-C3H7, i-C3H7, t-Bu). Interestingly, these reactions of alcohols give broad 

1H NMR resonances in benzene; upon evaporation of volatile materials, benzene-insoluble 

white solids are obtained that suggest oligomeric structures. (The bulkier ToMZnOt-Bu is 
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monomeric and soluble in benzene, and it is also spectroscopically distinct from 11).19a The 

monomeric structures of 8-12 are verified by X-ray crystallography (see Figure 2 for 8 and 

Figures S-18 – S-21 for 9-12). The alkylperoxy group of 9 is disordered over two positions 

and will not be discussed. 

 

 

 

 

 

 

 

Figure 2. ORTEP diagram of ToMZnOOEt (8); ellipsoids are plotted at 35% probability, and hydrogen atoms 
and a toluene solvent molecule are not plotted. Significant interatomic distances (Å): Zn1-O4, 1.877(1); Zn1-O5, 
2.630(2); Zn1-N1, 2.027(1); Zn1-N2, 2.045(1); Zn1-N3, 2.033(1); O4-O5, 1.466(2). Significant interatomic 
angles (°): Zn1-O4-O5, 103.1(1); N1-Zn1-O4, 121.34(6); N2-Zn1-O4, 119.87(6); N3-Zn1-O4, 128.53(6). 
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Bridging [diketiminatoZn(µ2-OOEt)]2 contains longer Zn-O distances [1.971(1) and 2.044(1) 

Å],13 and  triply-bridging Zn3(µ3-OOMe) Zn-O distances are much longer (2.132 Å average) 

in the tetrameric cube [(MeZn)4(µ3-OOMe)2(µ3-OZnMeL)2] (L = diazabutadiene).10 

However, the related alkoxide ToMZnOt-Bu contains a shorter Zn-O distance of 1.835(1) 
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Å.19a Additionally, the general structural features of 8-12 are roughly similar to those of 

crystallographically characterized monomeric tris(pyrazolyl)borato transition-metal 

alkylperoxides.18 These 3d transition metal alkylperoxides are typically synthesized from 

hydroperoxides which limits the diversity of readily accessible alkyl groups. The preparation 

of 8-11 from O2, as well as the availability of cumylperoxy 12, provides a range of 

alkylperoxy zinc compounds for structural comparison. 

Interestingly, the compound with the longest O-O distance contains the smallest Zn-O-O 

angle and shortest Zn-Ob distance (Table 2).  

Table 2. Comparison of interatomic O-O and Zn-O (Å) distances and Zn-O-O angles (°) for 
compounds 8 and 10-12. 

Compound O-O ∠Zn-O-O Zn-Ob  

ToMZnOOEt (8) 1.466(2) 103.1(1) 2.630(2) 

ToMZnOO(i-C3H7) (10) 1.441(3) 105.1(1) 2.644(2) 

ToMZnOOt-Bu (11) 1.490(2) 97.11(9) 2.534(2) 

ToMZnOOCMe2Ph (12) 1.477(3) 103.4(2) 2.637(2) 

 

Thus, the O-O distances follow the trend 10 < 8 < 12 < 11 that inversely tracks the Zn-Oa-Ob 

angles and the Zn-Ob distances 11 < 8 ~ 12 < 10. All of the Zn-Ob distances in 8 and 10-12 

are within the sum of Zn and O van der Waals radii (2.91 Å), but well outside the sum of 

covalent radii for Zn and oxygen (1.88 Å).22 The nature of that interaction may be considered 
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in the context of the systematically monomeric structures for 8-12 that contrast dimeric or 

oligomeric [ToMZnOR]n (R = Et, n-C3H7, i-C3H7) compounds. As noted above, the 

spectroscopic and physical properties of ToMZnOR are more consistent with oligomeric 

structures. Thus, the Zn-Ob interaction likely perturbs the atomic distances to a small but 

important degree to stabilize compounds 8-12 as the first structurally characterized 

monomeric zinc alkylperoxides. 

Mechanistic investigations and kinetics of ToMZnR and O2. 

General observations for the reactions of ToMZnR and O2 allow comparison to alkylzinc/O2 

systems that are less amenable to rate law determinations. Reactions of ToMZnEt (2) and O2 

(50 psi) performed under ambient lighting and in the dark give equivalent conversion of 2 

and yield (93%) of 8 after 32 h.  Galvinoxyl inhibits the conversion. The ToMZnOOR 

compounds are the only detectable products from reactions of 2, 3, 4, or 5 with O2 in the 

presence or absence of azobis(isobutyronitrile) (AIBN). Species such as C4H10, C2H6, 

ToMZnCMe2CN, ToMZnOOCMe2CN (or related products from 3, 4, and 5) that might be 

expected from radical initiation or termination processes are not observed for reactions of 

oxygen and ToMZnEt. 

Rate law measurements for the reaction of 2 and O2 from 45 – 96 °C and 30 – 100 psi O2 

were thwarted by variable induction periods and inconsistent concentration dependencies for 

both O2 and ToMZnEt. However, in the presence of AIBN (0.2 – 1.3 equiv), plots of [2] vs. 

time follow an exponential decay providing the pseudo-first-order rate constant kobs. Notably, 

kobs values are equivalent within error at O2 pressures of 30, 50, 70, 80 and 100 psi, showing 

zero-order oxygen dependence (Figure S-3). A linear correlation of [AIBN]1/2 vs. kobs passes 
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through the origin ([2]ini = 25 mM, [AIBN]ini 5.4 - 33.9 mM, 54 °C), giving the rate law -

d[2]/dt = k'[2]1[O2]0[AIBN]1/2 (k' = 3.0 ± 0.1 × 10-3 M−1/2 s−1) which appears valid over at 

least three half-lives of the reaction time-course. This rate law is consistent with a radical 

chain mechanism (Scheme 1) and is similar to empirical rate laws for autoxidation of organic 

compounds, organoboranes,2 and a few O2 insertions into transition-metal alkyls. Thus, our 

studies provide the first rate law-based support for a radical chain process for the interaction 

of alkylzinc species and O2. 

 

Scheme 1. Proposed radical chain mechanism for ToMZnOOEt formation from ToMZnEt and O2. 

      The postulated radical chain mechanism includes a bimolecular homolytic substitution 

process (SH2) at zinc that likely involves an electron transfer from the HOMO (the Zn-C 

bond) to •OOEt to form a Zn-O bond and •Et. The inert nature of ToMZnMe (1) and ToMZnH 

(13) with O2 under these conditions suggests that •OOR (R = H, Me) is not able to oxidize the 

Zn-H and Zn-Me bonds even in the presence of AIBN and an initiated radical chains (i.e., 

•OOEt).  

Previously, the weaker EtZn–Et bond vs. MeZn–Me provided a rationalization for the slower 

reaction of oxygen and ZnMe2 in comparison to ZnEt2.5 Although the bond dissociation 
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energies (BDE's) for ToMZn–R have not yet been determined, the values are expected to 

follow the trends of RZn–R, which have been determined from statistical unimolecular 

reaction calculations (RRKM theory): EtZn–Et < MeZn–Me (EtZn–CH2CH3 = 219±8 kJ/mol 

(52.4±2.0 kcal/mol); MeZn–CH3 = 266.5±6.3 kJ/mol (63.7±1.5 kcal/mol).23 However, the 

experimental intrinsic BDE (determined from the ion beam method) for [Zn–H]+ is much 

smaller than [Zn–CH3]+ BDE: [Zn–H]+ = 231±13 kJ/mol (55.2±3.1 kcal/mol); [Zn–CH3]+ = 

295±13 kJ/mol (70.6±3.2 kcal/mol).24 The intrinsic BDE's also provide the BDE for MeZn–

CH3 as 290±13 kJ/mol (69.3±3.2 kcal/mol) for comparison between the two sets of values. 

Regardless, the inert nature of ToMZnH toward O2 is not readily rationalized by known 

BDE's. 

Oxidation reactivity of ToMZnOOR. 

    The concentration of ToMZnOOEt in benzene-d6 is unchanged after 24 h at 120 °C in a 

sealed NMR tube. After 3 days at 140 °C, 63% of ToMZnOOEt is converted to (k2-ToM)2Zn 

(14). Tert-butylperoxide 11 is even slower to form 14 (30% after 3 d at 135 °C), and 

cumylperoxy 12 is unchanged after 1 d at 165 °C. Photolysis of the alkylperoxy zinc 

compounds 8-12 (350 nm, benzene, room temperature) provides a trimeric zinc hydroxide 

species [(k2-ToM)Zn(m-OH)]3 (15) that deposits as white crystals over 24 h (eq. 3). The 

organic carbonyl products are MeCHO, Me2CO, and EtCHO from 8, 9, and 10, respectively. 

Compound 11 forms Me2CO, while the cumylperoxyzinc 12 forms acetophenone, methane, 

and the epoxide 2-methyl-2-phenyloxirane. 



www.manaraa.com

	   105	  

 

X-ray crystallography of disordered 15 establishes its connectivity as a trimeric [Zn(µ-OH)]3 

structure. Compound 15 is soluble in methylene chloride but insoluble in benzene, toluene, 

and tetrahydrofuran. The room temperature 1H NMR spectrum of 15 in methylene chloride-

d2 was broad. The spectrum was resolved at − 53 °C indicated local Cs-symmetry with 

equivalent zinc centers that are related by a rotation axis that is assumed to be C3 based on 

the solid-state structure. Bidentate coordination of ToM to Zn in 15 is further supported by 

two oxazoline νCN bands in the IR spectrum at 1577 (coordinated) and 1623 cm-1 (non-

coordinated) in an approximately 2:1 ratio. 

The formation of zinc hydroxide and an oxidized organic species is consistent with O−O 

homolysis; for example, thermal decomposition of Cp*2Hf(Ph)OOR gives Cp*2Hf(Ph)OH25 

and photolysis of dialkylperoxides are well known to provide 2 •OR that decompose to 

similar products.26 Compound 15 is a likely intermediate in the thermolysis of alkylperoxides 

8-12. That process also likely involves homolytic O−O bond cleavage because thermal 

treatment of 15 (in benzene-d6) gives 14 (8 h, 120 °C). Conversion of 15 to 14 is faster than 

the overall rate of alkylperoxide decomposition, making that step kinetically competent for 

the overall conversion. Thus, the rate-determining step of conversion of 8-12 to 14 is O−O 

bond homolysis. 



www.manaraa.com

	   106	  

The thermal stability of the [Zn]OOR moieties is remarkable in comparison to related main 

group and transition-metal species, and this may be at least partly related to the monomeric 

nature of compounds 8-12. We therefore further investigated their reactivity for comparison 

with zinc alkylperoxides known to have multimetallic or unknown structures. For example, 

rapid comproportionation of alkylzinc and alkylperoxyzinc compounds to alkoxyzinc species 

starkly contrasts the present system. 1H NMR spectra of mixtures of alkylperoxyzincs 8-11 

with the corresponding tris(oxazolinyl)boratozinc alkyl (2, 3, 4, or 5) or hydride 13 only 

contained signals assigned to starting materials, even after the mixtures were heated at 80 °C 

for 12 h. 

 Despite their thermal stability, 8-12 are reactive in oxidation processes and group transfer 

chemistry. Compounds 8-12 readily react with phosphines such as PH2Ph, PPh3, P(p-

C6H4Me)3, and PMe3 to form the corresponding phosphine oxides via stoichiometric O-atom 

transfer (eq. 4). Kinetic studies of stoichiometric phosphine oxidations, particularly on a 

series of isolable monomeric alkylperoxymetal compounds, are surprisingly rare even though 

a range of mechanisms are conceivable (and proposed in related metal-alkylperoxide 

systems), including radical chains via O−O bond homolysis to give alkoxyradical 

intermediates,27 nucleophilic attack of the phosphine on an η2-peroxyzinc, and coordination 

of phosphine to zinc followed by nucleophilic attack by the alkylperoxide.28, 29 
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Reaction rates for ToMZnOOt-Bu and PR3 follow the trend PPh3 < P(p-C6H4Me)3 < PMe3 < 

PH2Ph; PPh3 reacts in less than 2 h at 60 °C, whereas PMe3 reacts in less than 5 minutes at 

ambient temperature. The second-order rate law -d[ToMZnOOR]/dt = k[ToMZnOOR][P(p-

C6H4Me)3] emphasizes the mononuclear nature of alkylperoxyzinc species and the 

bimolecular nature of the reaction. The rate constants follow the trend: 8 > 9 > 10 >> 11 

(k259K
(8) = 8.8 ± 0.3 × 10−2 M−1s−1, k259K

(9) = 7.5 ± 0.2 × 10−2 M−1s−1, k259K
(10) = 6.3 ± 0.2 × 

10−3 M−1s−1, k294K
(11) = 1.22 ± 0.04 × 10−3 M−1s−1; [P(p-C6H4Me)3] = 30 mM) showing steric 

effects in the reactivity of the alkylperoxyzinc reagents. Eyring analysis of the reaction 

between 8 and P(p-C6H4Me)3 provides ΔH‡ = 9.5 ± 0.3 kcal⋅mol−1 and ΔS‡ = − 27 ± 1 

cal⋅mol−1⋅K−1.30 The second-order rate law, activation parameters, and reaction conditions 

rule out a mechanism for phosphine oxidation by ToMZnOOR involving oxygen-oxygen 

bond homolysis.27 The rate of P(p-C6H4Me)3 oxidation by 8-11 follows the size of the 

peroxyalkyl group (t-Bu < i-C3H7 < n-C3H7 < Et), but no relationship with Zn−O−O angles 

or O−O distances (obtained from the X-ray data) could be identified. Faster reaction rates 

with smaller alkyl groups suggest the mechanism involving nucleophilic attack of phosphine 

on an electrophilic alkylperoxide. 

Alkylperoxy group transfer reactivity with hydrosilanes. 

   In addition to the phosphine oxidation via O-atom transfer, metal peroxides are also known 

to oxidize C-H and Si-H bonds to give alcohol and silanol (SiOH) groups, 

respectively.19b,29,31 In contrast, the ToMZnOOR compounds 8-12 react with organosilanes 

(HSiR'3) by peroxy-group transfer to silicon. For example, 8 and HSiMe2Bn react according 

to eq. 5.  
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  This alkylperoxy- group transfer reactivity resembles previously observed alkoxy-group 

transfer to silicon from zinc alkoxides,19b and that reaction is likely important in zinc- 

catalyzed dehydrocoupling of alcohols and silanes as well as hydrosilylation of carbonyls.32 

Related Si-O bond formations may be involved in transition-metal, rare earth, and main- 

group metal catalyzed hydrosilylations.33 While zinc alkylperoxides may be hydrolyzed to 

alkyl hydroperoxides,3,34 the hydrolysis product is [Zn]OH. In the reactions here with 

organosilanes, ToMZnH is the product, and that gives a possibility for (future) catalysis (e.g., 

zinc-catalyzed hydrosilylation of O2).  

The empirical rate law for the reaction of 8 and BnMe2SiH of -d[ToMZnOOEt]/dt = 

k[ToMZnOOEt][BnMe2SiH] (k309K =1.64 ± 0.09 × 10−2 M−1s−1) was measured from 288 K to 

320 K. The steric effects in this reactivity of the zinc alkyl peroxides also follow the similar 

trend as observed in phosphine oxidation: 8 > 9 > 10 (k309K
(8) = 1.64 ± 0.09 × 10−2 M−1s−1, 

k309K
(9) = 1.17 ± 0.02 × 10−2 M−1s−1, k309K

(10) = 1.9 ± 0.02 × 10−3 M−1s−1). The activation 

parameters for the reaction of 8 and BnMe2SiH, ΔH‡ = 12.6 ± 0.7 kcal·mol−1 and ΔS‡ = − 26 

± 2 cal·mol−1K−1, are consistent with an ordered transition-state associated with a second-

order process.30 Primary isotope effects for the reactions of ToMZnOOR and BnMe2SiH or 

BnMe2SiD are unity [kH/kD
(8) = 1.10(7), kH/kD

(10) = 1.11(9)].  

For comparison, the second-order Si−O bond forming reaction of the aryloxyzinc 

ToMZnOC6H3Me2 and PhMeSiH2 occurs with similar activation parameter values (ΔH‡ = 13 
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kcal·mol−1; ΔS‡ = − 27 cal·mol−1K−1) and an isotope effect of 1.3(1).19b The isotope effect for 

the σ-bond metathesis reaction of CpCp*ClHf-SiH2Ph and PhSiH3 or PhSiD3 is 2.7(2), with 

ΔH‡ = 19 kcal·mol−1 and ΔS‡ = − 33 cal·mol−1K−1.35 Rare earth mediated Si−C bond 

formations provide isotope effects closer to unity.36 For example, Cp*2ScMe and Ph2SiH2 or 

Ph2SiD2 react with an isotope effect of 1.15(5) and activation parameters of ΔH‡ = 6.6 

kcal·mol−1 and ΔS‡ = − 43 cal·mol−1K−1. Additionally, the reaction of ToMMgNHt-Bu and 

PhMeSiH2 involving Si−N bond formation occurs with an isotope effect of 1.0(2), ΔH‡ = 

5.7(2) kcal·mol−1, and ΔS‡ = − 46.1(8) cal·mol−1K−1.37 Although a number of variables are 

not constant between these experiments (including variations in organosilane and metal 

center, as well as various Si−E bond formations including Si−O, Si−N, and Si−C bonds), a 

rough empirical trend of isotope effect and activation parameters may be noted from the 

kinetic parameters associated with these reactions. In particular, metathesis reactions 

involving isovalent metal-mediated group transfer to silicon in which Si−H or Si−D bonds 

are broken have isotope effects closer to unity in highly ordered transition states (ΔS‡ << 0) 

and small enthalpic activation barriers. While these parameters are not correlated,38 a second-

order elementary step in which the barrier is highly dependent on the activation entropy and 

has a small primary isotope effect may indicated an early transition state in which little bond-

cleavage has occurred. However, more experiments, as well as theoretical treatments that 

probe isotope effects and activation parameters of concerted Si−H bond cleavages/Si−E bond 

formations are still needed before significant conclusions may be drawn from these 

observations.  

This metathical pathway is apparently accessible because Zn−O and O−O bond homolysis 
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pathways, which are common for transition-metal alkylperoxides, are not fast in this 

monomeric zinc system at moderate temperatures. Comproportionation reactions of 

peroxyzinc and alkylzinc compounds also are inhibited by tris(oxazolinyl)borate ligand. 

Once these decomposition pathways are blocked, the reaction chemistry of peroxyzinc 

compounds provides several intriguing reactions and observations including a non-oxidative 

peroxy group transfer. 

Conclusion. 

Aspects of the chemistry of ToMZnOOR 8-12 are distinct from transition-metal alkyl 

peroxides. A particularly interesting comparison is with monomeric d0 Cp2ClTiOOt-Bu, in 

which Cp2ClTiO• is easily formed.27 Neither Ti(IV) nor Zn(II) can be further oxidized, yet 

the apparent homolysis of the O−O bond in the two compounds occur at very different rates. 

The origin of this effect may be thermodynamic (O−O bond strength versus oxyl radical 

stability), but it also may result from transition-state effects. With 3dn transition-elements, 

metal-centered oxidation may further contribute to the destabilization of alkylperoxides. The 

tris(pyrazolyl)borato transition-metal alkylperoxides clearly show these effects, and the 

resulting compounds can oxidize CH bonds. A second interesting comparison is with the 

autocatalytic chain reactions of Tp*PtHMe2 and O2, where Tp*Me2PtOO• reacts with the 

thermodynamically stronger Pt−H bond rather than the Pt−Me moiety.39 H-atom abstraction, 

however, is more plausible than •CH3 abstraction, and in this sense the Tp*PtHMe2 oxidation 

is similar autocatalytic oxidation of organic compounds (where weaker C−C bonds are less 

reactive than C−H bonds). While the zinc-carbon BDE's in 1-5 are expected to follow the 

trend 1 > 2 > 3 > 4 > 5 and the reaction rates with O2 follow 5 > 4 ~ 3 ~ 2 (with 1 not 

reacting), the unreactive Zn−H bond in 13 is expected to be weaker than the Zn−C bonds. 
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The trend of reaction rate for Zn−Me, Zn−Et, and Zn−CMe3 follows the expected trend from 

the BDE's, while Zn−H does not. Thus, unlike the selectivity (i.e., relative rates) of radical 

chains in autoxidation of hydrocarbyl species that are thought to be governed by C-H BDE's 

(tertiary > secondary > primary), the radical chains of these reactions are not entirely 

dominated by cleavage of the weakest Zn−E bond. 
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Experimental and other supporting informations. 

 General Procedures.  

All reactions were performed under a dry argon atmosphere using standard Schlenk 

techniques or under a nitrogen atmosphere in a glovebox, unless otherwise indicated. 

Benzene, toluene, pentane, diethyl ether, and tetrahydrofuran were dried and deoxygenated 

using an IT PureSolv system. Benzene-d6 and toluene-d8 were heated to reflux over Na/K 

alloy and vacuum-transferred. Dichloromethane-d2 was vacuum transferred from CaH2. 

ToMZnMe (1),19b ToMZnH (13),19a H[ToM],20b Tl[ToM],20a and dialkylzincs were synthesized 

according to literature procedures.40 Grignard reagents were purchased from Sigma-Aldrich 

and transferred to flasks equipped with re-sealable Teflon valves for storage. t-BuOOH (5.5 

M in decane), PhMe2COOH (80% technical grade), and AIBN were purchased from Sigma-

Aldrich and stored inside glove box freezer at − 30 °C. Benzyldimethylsilane was purchased 

from Gelest. Benzyldimethylsilane-d1 was synthesized by reduction of 

benzyldimethylchlorosilane with LiAlD4. 

1H, 13C{1H}, 11B, and 17O NMR spectra were collected on a Bruker DRX400 spectrometer or 

an Avance II 600 spectrometer. 15N chemical shifts were determined by 1H-15N HMBC 

experiments on a Bruker Avance II 700 spectrometer with a Bruker Z-gradient inverse TXI 

1H/13C/15N 5mm cryoprobe; 15N chemical shifts were originally referenced to an external 

liquid NH3 standard and recalculated to the CH3NO2 chemical shift scale by adding − 381.9 

ppm. Elemental analyses were performed using a Perkin-Elmer 2400 Series II CHN/S in the 

Iowa State Chemical Instrumentation Facility. 

Caution! High-pressure glass apparatuses, reactions of oxygen and reduced compounds, and 



www.manaraa.com

	   116	  

peroxide-containing materials must be handled with care. Isolated alkylperoxide compounds 

8-12 were tested for possible explosive properties, and they did not ignite with attempted 

initiation under thermal, physical, or electrical stress. Regardless, only small quantities of 

alkylperoxides were prepared at a single instance. Thick-walled NMR tubes equipped with J. 

Young-style re-sealable Teflon valves (pressured to 100 psi with O2) were obtained from 

Wilmad-Labglass and attached to a high-pressure steel manifold through commercial 

Swagelock fittings.8c The tubes were handled in protective jackets for safety concerns. Due to 

the potentially pyrophoric and explosive nature of silylalkylperoxides,26 the BnMe2SiOOR 

(R = Et, n-C3H7, i-C3H7 and t-Bu) species were not isolated; these compounds were 

characterized in solution and compared with the corresponding BnMe2SiOR using 1H, 

13C{1H} and 29Si NMR spectroscopy. 

Synthetic Methods. 

ToMZnEt (2). Diethylzinc (73.2 mL, 0.0882 g, 0.714 mmol) was added to a solution of 

HToM (0.274 g, 0.714 mmol) in 10 mL of benzene in a dropwise fashion. The solution was 

stirred for 12 h at room temperature, and then the volatiles were evaporated under reduced 

pressure. The resulting white solid was washed with pentane to provide analytically pure 

ToMZnEt (2) as a crystalline white solid (0.304 g, 0.638 mmol, 89.3%). X-ray quality crystals 

were obtained from a concentrated toluene solution that was allowed to stand at -30 °C. 1H 

NMR (400 MHz, benzene-d6): δ 0.68 (q, 2 H, ZnCH2CH3), 1.02 (s, 18 H, CNCMe2CH2O), 

1.81 (t, 3 H, ZnCH2CH3), 3.48 (s, 6 H, CNCMe2CH2O), 7.35 (t, 3JHH = 4.0 Hz, 1 H, para-

C6H5), 7.53 (t, 3JHH = 4.0 Hz, 2 H, meta-C6H5), 8.34 (d, 3JHH = 4.0 Hz, 2 H, ortho-C6H5). 

13C{1H} NMR (175 HMz, benzene-d6): δ -2.08 (ZnCH2CH3), 15.36 (ZnCH2CH3), 28.33 
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(CNCMe2CH2O), 65.61 (CNCMe2CH2O), 80.78 (CNCMe2CH2O), 126.19 (para-C6H5), 

127.21 (meta-C6H5), 136.48 (ortho-C6H5), 142.92 (br, ipso-C6H5), 190.02 (br, 

CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ -17.3. 15N{1H} NMR: d -155.5. IR 

(KBr, cm-1): 2969 (s), 2929 (m), 2896 (m), 1603 (s, νCN), 1461 (m), 1385 (m), 1366 (m), 

1350 (m), 1268 (s), 1193 (s), 1159 (s), 953 (s), 892 (w), 741 (m), 706 (s). Anal. Calcd. for 

C23H34BN3O3Zn: C, 57.95; H, 7.19; N, 8.81. Found: C, 57.77; H, 7.10; N, 8.82. mp 167-

170 °C (dec). 

ToMZn(n-C3H7) (3). A suspension of Zn(OMe)2 (0.174 g, 1.36 mmol) in Et2O (20 mL) was 

cooled to 0 °C. n-C3H7MgBr (1.4 mL, 2 M in Et2O) was added, and the resulting mixture was 

allowed to warm to room temperature and stirred for 1 h. The mixture was filtered to remove 

the insoluble magnesium salts from (n-C3H7)2Zn, and the solution was added to Tl[ToM] 

(0.200 g, 0.341 mmol). Immediately, a black mixture formed. This mixture was stirred for 20 

min., the volatile materials were evaporated under reduced pressure, and the residue was 

extracted with benzene (10 mL). Evaporation of the colorless extracts provided a white solid 

that was washed with pentane (3 × 5 mL) and dried under vacuum. Analytically pure 

ToMZn(n-C3H7) (0.143 g, 0.291 mmol, 85.3%) was obtained as a white crystalline solid. X-

ray quality crystals were grown by slow diffusion of pentane into a concentrated toluene 

solution standing at -30 °C. 1H NMR (400 MHz, benzene-d6): δ 0.70 (m, 2 H, 

ZnCH2CH2CH3), 1.02 (s, 18 H, CNCMe2CH2O), 1.46 (t, 3JHH = 7.2 Hz, 3 H, ZnCH2CH2CH3), 

2.08 (m, 2 H, ZnCH2CH2CH3), 3.47 (s, 6 H, CNCMe2CH2O), 7.37 (t, 3JHH = 6.8 Hz, 1 H, 

para-C6H5), 7.56 (t, 3JHH = 7.6 Hz, 2 H, meta-C6H5), 8.36 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 

13C{1H} NMR (175 HMz, benzene-d6): δ 10.92 (ZnCH2CH2CH3), 23.29 (ZnCH2CH2CH3), 
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24.93 (ZnCH2CH2CH3), 28.33 (CNCMe2CH2O), 65.67 (CNCMe2CH2O), 80.78 

(CNCMe2CH2O), 126.22 (para-C6H5), 127.24 (meta-C6H5), 136.49 (ortho-C6H5), 146.10 (br, 

ipso-C6H5), 190.32 (br, CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ -17.3. 15N{1H} 

NMR (71 MHz, benzene-d6): δ -155.8. IR (KBr, cm-1): 3074 (w), 3045 (w), 2966 (s), 2935 

(s), 2825 (m), 1601 (s, νCN), 1495 (w), 1462 (s), 1432 (w), 1384 (m), 1365 (m), 1354 (m), 

1272 (s), 1251 (w), 1195 (s), 1161 (s), 957 (s), 896 (w), 867 (w), 841 (w), 816 (m), 746 (s), 

703 (s), 668 (s). Anal. Calcd. for C24H36BN3O3Zn: C, 58.74; H, 7.39; N, 8.56. Found: C, 

58.98; H, 7.59; N, 8.43. Mp 180-184 °C (dec). 

ToMZn(i-C3H7) (4). A solution of (i-C3H7)2Zn was prepared following the procedure for (n-

C3H7)2Zn above with Zn(OMe)2 (0.850 g, 6.67 mmol) and i-C3H7MgBr (3.2 mL, 2 M in 

Et2O). The (i-C3H7)2Zn was added to Tl[ToM] (1.215 g, 2.071 mmol) in benzene (10 mL) to 

give a black mixture that was allowed to stir for 20 min. ToMZn(i-C3H7) (4; 0.895 g, 1.82 

mmol, 88.1%) was isolated as described for 2. 1H NMR (400 MHz, benzene-d6): δ 1.02 (s, 18 

H, CNCMe2CH2O), 1.04 (m, 3JHH = 7.7 Hz, 1 H, ZnCHMe2), 1.83 (d, 3JHH = 7.6 Hz, 6 H, 

ZnCHMe2), 3.45 (s, 6 H, CNCMe2CH2O), 7.37 (t, 3JHH = 4.2 Hz, 1 H, para-C6H5), 7.56 (t, 

3JHH = 7.4 Hz, 2 H, meta-C6H5), 8.35 (d, 3JHH = 7.5 Hz, 2 H, ortho-C6H5). 13C{1H} NMR 

(175 HMz, benzene-d6): δ 10.08 (ZnCHMe2), 26.74 (ZnCHMe2), 28.31 (CNCMe2CH2O), 

65.68 (CNCMe2CH2O), 80.22 (CNCMe2CH2O), 126.21 (para-C6H5), 127.21 (meta-C6H5), 

136.52 (ortho-C6H5), 143.16 (br, ipso-C6H5), 190.54 (br, CNCMe2CH2O). 11B NMR (128 

MHz, benzene-d6): δ -17.3. 15N{1H} NMR (71 MHz, benzene-d6): δ -156.0. IR (KBr, cm-1): 

3077 (m), 3047 (m), 2965 (s), 2896 (s), 2796 (w), 1602 (s, νCN), 1495 (w), 1462 (s), 1432 (w), 

1384 (m), 1366 (m), 1352 (m), 1308 (w), 1271 (s), 1250 (w), 1195 (s), 1161 (s), 1049 (m), 
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1019 (m), 954 (s), 897 (w), 841 (w), 817 (m), 744 (s), 704 (s), 666 (s). Anal. Calcd. for 

C24H36BN3O3Zn: C, 58.74; H, 7.39; N, 8.56. Found: C, 59.00; H, 7.26; N, 8.53. Mp: 165-

170 °C (dec). 

ToMZn(t-Bu) (5). A solution of (t-Bu)2Zn was prepared following the procedure for (n-

C3H7)2Zn above with Zn(OMe)2 (0.661 g, 5.186 mmol) and t-BuMgBr (5.1 mL, 2 M in Et2O). 

The (t-Bu)2Zn was added to Tl[ToM] (0.950 g, 1.62 mmol) in benzene (10 mL) to give a 

black mixture that was allowed to stir for 20 min. ToMZn(t-Bu) (5; 0.763 g, 1.51 mmol, 

93.3%) was isolated as described for 2. X-ray quality crystals were grown from slow pentane 

diffusion into a concentrated toluene solution of 5 at -30 °C. 1H NMR (400 MHz, benzene-

d6): δ 1.04 (s, 18 H, CNCMe2CH2O), 1.59 (s, 9 H, ZnCMe3), 3.43 (s, 6 H, CNCMe2CH2O), 

7.37 (t, 3JHH = 7.6 Hz, 1 H, para-C6H5), 7.56 (t, 3JHH = 7.0 Hz, 2 H, meta-C6H5), 8.36 (d, 3JHH 

= 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 MHz, benzene-d6): δ 17.25 (ZnCMe3), 28.26 

(CNCMe2CH2O), 35.82 (ZnCMe3), 65.92 (CNCMe2CH2O), 80.80 (CNCMe2CH2O), 126.13 

(para-C6H5), 127.13 (meta-C6H5), 136.58 (ortho-C6H5), 143.32 (br, ipso-C6H5), 190.49 (br, 

CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ -18.6. 15N{1H} NMR (71 MHz, 

benzene-d6): δ -155.7. IR (KBr, cm-1): 3078 (w), 3039 (w), 2968 (s), 2937 (s), 2805 (s), 2746 

(w), 2685 (w), 1589 (s, νCN), 1495 (w), 1461 (s), 1388 (s), 1353 (s), 1274 (s), 1200 (s), 1180 

(s), 1158 (s), 1022 (w), 960 (s), 893 (m), 840 (m), 811 (s), 750 (s), 707 (s), 665 (s). Anal. 

Calcd. for C25H38BN3O3Zn: C, 59.48; H, 7.59; N, 8.32. Found: C, 59.56; H, 7.43; N, 8.32. 

Mp 127-130 °C (dec). 

ToMZnPh (6). ToMZnCl (0.206 g, 0.426 mmol) and PhLi (0.036 g, 0.430 mmol) were 

dissolved in THF (12 mL) and stirred for 8 h at ambient temperature. A white solid was 
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obtained by evaporation of the volatile materials, and the residue was extracted with 12 mL 

of benzene. Evaporation of the benzene, followed by pentane washes (3 × 5 mL) and drying 

under vacuum provided crystalline, analytically pure ToMZnPh (0.207 g, 0.394 mmol, 

94.5%). X-ray quality single crystals were grown from a concentrated toluene solution of 

ToMZnPh at -30 °C. 1H NMR (400 MHz, benzene-d6): δ 1.03 (s, 18 H, CNCMe2CH2O), 3.46 

(s, 6 H, CNCMe2CH2O), 7.38 (m, 1 H, para-C6H5), 7.38 (m, 1 H, para-ZnC6H5), 7.51 (t, 

3JHH = 7.2 Hz, 2 H, meta-C6H5), 7.58 (dt, 3JHH = 3.2 Hz, 3JHH = 7.2 Hz, 2 H, meta-C6H5), 8.09 

(dd, 3JHH = 7.6 Hz, 3JHH = 4.0 Hz, 2 H, ortho-ZnC6H5), 8.38 (d, 3JHH = 4.0 Hz, 2 H, ortho-

C6H5). 13C{1H} NMR (175 HMz, benzene-d6): δ 28.40 (CNCMe2CH2O), 65.86 

(CNCMe2CH2O), 81.06 (CNCMe2CH2O), 126.32 (para-C6H5), 126.66 (para-C6H5) 127.28 

(meta-C6H5), 127.95 (meta-ZnC6H5), 136.49 (ortho-C6H5), 140.41 (ortho-ZnC6H5), 142.52 

(br, ipso-C6H5), 154.40 (ipso-ZnC6H5), 190.52 (br, CNCMe2CH2O). 11B NMR (128 MHz, 

benzene-d6): δ -18.1. 15N{1H} NMR: δ -157.4. IR (KBr, cm-1): 3048 (w), 2966 (m), 2928 (w), 

2891 (w), 1594 (s, νCN), 1460 (m), 1389 (m), 1369 (m), 1352 (m), 1275 (s), 1196(s), 1158 

(m), 1071 (w), 948 (m), 895 (w), 842 (w), 817 (m), 758 (s), 746 (m), 727 (s), 704 (s). 

C28H36BN3O3Zn: C, 61.80; H, 6.53; N, 8.01. Found: C, 61.25; H, 6.30; N, 8.01. Mp: 197-

200 °C (dec). 

ToMZnBn (7). A solution of Bn2Zn was prepared following the procedure for (n-C3H7)2Zn 

above with Zn(OMe)2 (0.623 g, 4.89 mmol) and BnMgBr (4.8 mL, 2 M in Et2O). The Bn2Zn 

was added to Tl[ToM] (1.530 g, 2.608 mmol) in benzene (10 mL) to give a black mixture that 

was allowed to stir for 20 min. ToMZnBn (7; 1.305 g, 2.422 mmol, 92.9%) was isolated as 

described for 2. X-ray quality crystals were grown from slow pentane diffusion into a 
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concentrated toluene solution of 7 at -30 °C. 1H NMR (400 MHz, benzene-d6): δ 0.93 (s, 18 

H, CNCMe2CH2O), 2.32 (s, 2 H, ZnCH2C6H5) 3.43 (s, 6 H, CNCMe2CH2O), 6.95 (t, 3JHH = 

7.6 Hz, 1 H, para-ZnCH2C6H5), 7.26 (t, 3JHH = 7.6 Hz, 2 H, meta- ZnCH2C6H5), 7.36 (m, 2 H, 

ortho-ZnCH2C6H5), 7.36 (m, 1 H, para-C6H5), 7.54 (t, 3JHH = 7.6 Hz, 2 H, meta-C6H5), 8.31 

(d, 3JHH = 7.6 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 HMz, benzene-d6): δ 19.11 

(ZnCH2Ph), 28.20 (CNCMe2CH2O), 65.67 (CNCMe2CH2O), 80.94 (CNCMe2CH2O), 121.03 

(para-ZnCH2C6H5) 126.30 (para-C6H5), 126.91 (meta-ZnCH2C6H5), 127.25 (meta-C6H5), 

128.94 (ortho-ZnCH2C6H5), 136.44 (ortho-C6H5), 142.76 (br, ipso-C6H5), 152.90 (ipso-

ZnCH2C6H5), 190.33 (br, CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ -17.3. 

15N{1H} NMR (71 MHz, benzene-d6): δ -157.3. IR (KBr, cm-1): 3071 (w), 3013 (w), 2966 

(m), 2927 (w), 2889 (w), 1594 (s, νCN), 1487 (s), 1461 (s), 1435 (w), 1385 (m), 1366 (m), 

1353 (m), 1273 (s), 1196 (s), 1163 (s), 1051 (s), 996 (w), 956 (s), 896 (w), 841 (w), 817 (m), 

800 (m), 748 (s), 709 (s). Anal. Calcd. for C28H36BN3O3Zn: C, 62.42; H, 6.73; N, 7.80. 

Found: C, 62.09; H, 6.74; N, 7.77. Mp: 194-197 °C. 

ToMZnOOEt (8). A 100 mL re-sealable Teflon-valved flask was charged with a benzene 

solution (20 mL) of ToMZnEt (0.450 g, 0.944 mmol). The solution was degased with freeze-

pump-thaw cycles, placed under an atmosphere of O2, and then sealed. The solution was 

heated at 60 °C for 12 h and then allowed to cool to room temperature. The volatile materials 

were removed under reduced pressure. The resulting white residue was washed with pentane 

(3 × 5 mL) and dried under vacuum yielding analytically pure ToMZnOOEt (8; 0.436 g, 

0.857 mmol, 90.8%). X-ray quality crystals were grown by allowing pentane to slowly 

diffuse into a saturated toluene solution of 8 cooled to -30 °C. 1H NMR (400 MHz, benzene-

d6): δ 1.14 (s, 18 H, CNCMe2CH2O), 1.40 (t, 3JHH = 6.8 Hz, 3 H, ZnOOCH2CH3), 3.48 (s, 6 
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H, CNCMe2CH2O), 4.34 (q, 3JHH = 6.8 Hz, 2 H, ZnOOCH2CH3), 7.37 (t, 3JHH = 7.2 Hz, 1 H, 

para-C6H5), 7.55 (t, 3JHH = 7.6 Hz, 2 H, meta-C6H5), 8.32 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 

13C{1H} NMR (175 HMz, benzene-d6): δ 14.85 (ZnOOCH2CH3), 28.15 (CNCMe2CH2O), 

65.67 (CNCMe2CH2O), 71.94 (ZnOOCH2CH3), 81.19 (CNCMe2CH2O), 126.47 (para-C6H5), 

127.35 (meta-C6H5), 136.36 (ortho-C6H5), 142.03 (br, ipso-C6H5), 190.66 (br, 

CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ -17.1. 15N{1H} NMR (71 MHz, 

benzene-d6): δ -159.2. 17O NMR (81 MHz, benzene-d6): δ 319 (ZnOO(CH2CH3)], 169 

(ZnOO(CH2CH3)]. IR (KBr, cm-1): 3083 (w), 3042 (w), 2969 (m), 2929 (w), 2885 (w), 1592 

(s, νCN), 1495 (w), 1462 (s), 1435 (w), 1387 (m), 1368 (m), 1351 (m), 127 (s), 1198 (s), 1198 

(s), 1164 (s), 963 (s), 898 (w), 819 (w), 744(w). Anal. Calcd. for C23H34BN3O5Zn: C, 54.30; 

H, 6.73; N, 8.26. Found: C, 54.52; H, 6.74; N, 8.12. Mp: 208-211 °C. 

ToMZnOO(n-C3H7) (9). A 25 mL re-sealable Teflon-valved flask was charged with 

ToMZn(n-C3H7) (3; 0.250 g, 0.509 mmol) dissolved benzene (12 mL). The solution was 

degassed with freeze-pump-thaw cycles. O2 (1 atm) was added, the solution was stirred for 

12 h at 60 °C, and then the reaction mixture was allowed to cool to room temperature. The 

volatile material were evaporated under reduced pressure, and the resulting white residue was 

washed with pentane (3 × 5 mL) and dried under vacuum, yielding analytically pure 

ToMZnOO(n-C3H7) (9; 0.230 g, 0.440 mmol, 86.4%) as a white crystalline solid. X-ray 

quality single crystals were grown by vapor diffusion of pentane into a concentrated toluene 

solution of 9 standing at -30 °C. 1H NMR (400 MHz, benzene-d6): δ 1.04 (t, 3JHH = 7.2 Hz, 3 

H, ZnOOCH2CH2CH3), 1.15 (s, 18 H, CNCMe2CH2O), 1.91 (m, 2 H, ZnOOCH2CH2CH3), 

3.48 (s, 6 H, CNCMe2CH2O), 4.28 (t, 3JHH = 6.4 Hz, 2 H, ZnOOCH2CH2CH3), 7.36 (t, 3JHH = 
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7.6 Hz, 1 H, para-C6H5), 7.55 (t, 3JHH = 7.6 Hz, 2 H, meta-C6H5), 8.32 (d, 3JHH = 7.6 Hz, 2 H, 

ortho-C6H5). 13C{1H} NMR (175 HMz, benzene-d6): δ 11.72 (ZnOOCH2CH2CH3), 21.76 

(ZnOOCH2CH2CH3), 28.16 (CNCMe2CH2O), 65.67 (CNCMe2CH2O), 78.67 

(ZnOOCH2CH2CH3), 81.19 (CNCMe2CH2O), 126.47 (para-C6H5), 127.36 (meta-C6H5), 

136.35 (ortho-C6H5), 142.07 (br, ipso-C6H5), 190.56 (br, CNCMe2CH2O). 11B NMR (128 

MHz, benzene-d6): δ -17.1. 15N{1H} NMR (71 MHz, benzene-d6): δ -160. 17O NMR (81 

MHz, benzene-d6): δ 322 (ZnOOCH2CH2CH3), 167 (ZnOOCH2CH2CH3). IR (KBr, cm-1): 

3069 (w), 2965 (m), 2923 (w), 2878 (w), 1578 (s, nCN), 1492 (w), 1463 (s), 1432 (w), 1385 

(m), 1369 (m), 1279 (m), 1262 (m), 1198 (m), 1198 (m), 1161 (m), 1000 (m), 970 (m). Anal. 

Calcd. for C24H36BN3O5Zn: C, 55.14; H, 6.94; N, 8.04. Found: C, 54.91; H, 6.78; N, 8.12. 

Mp: 158-160 °C.  

ToMZnOO(i-C3H7) (10). The procedure described above for ToMZnOO(n-C3H7) was used, 

starting from ToMZn(i-C3H7) (4; 0.310 g, 0.632 mmol) to afford 10 (0.291 g, 0.557 mmol, 

88.1%). 1H NMR (300 MHz, benzene-d6): δ 1.15 (s, 18 H, CNCMe2CH2O), 1.47 (d, 3JHH = 

6.3 Hz, 6 H, ZnOOCHMe2), 3.47 (s, 6 H, CNCMe2CH2O), 4.49 (m, 3JHH = 6 Hz, 1 H, 

ZnOOCHMe2), 7.36 (t, 3JHH = 7.5 Hz, 1 H, para-C6H5), 7.55 (t, 3JHH = 7.5 Hz, 2 H, meta-

C6H5), 8.32 (d, 3JHH = 7.5 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 HMz, benzene-d6): δ 

21.95 (ZnOOCHMe2), 28.16 (CNCMe2CH2O), 65.69 (CNCMe2CH2O), 76.32 

(ZnOOCHMe2), 81.20 (CNCMe2CH2O), 126.46 (para-C6H5), 127.35 (meta-C6H5), 136.36 

(ortho-C6H5), 144.41 (br, ipso-C6H5), 190.59 (br, CNCMe2CH2O). 11B NMR (128 MHz, 

benzene-d6): δ -17.3. 15N{1H} NMR (71 MHz, benzene-d6): δ -159.2. 17O NMR (81 MHz, 

benzene-d6): δ 304 (ZnOOCHMe2), 193 (ZnOOCHMe2). IR (KBr, cm-1): 3069 (w), 3044 (w), 
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2968 (s), 2929 (w), 2896 (w), 2870 (w), 1579 (s, nCN), 1490 (w), 1462 (s), 1433 (m), 1388 

(w), 1368 (m), 1279 (s), 1255 (m), 1197 (s), 1160 (s), 1117 (w), 1001 (s), 970 (s), 943 (m), 

898 (w), 877 (w), 847 (w), 817 (w), 733 (m), 708 (m). Anal. Calcd. for C24H36BN3O5Zn: C, 

55.14; H, 6.94; N, 8.04. Found: C, 54.83; H, 6.71; N, 8.02. Mp: 165-167 °C. 

ToMZnOO(t-Bu) (11). A solution of ToMZnH (0.550 g, 1.226 mmol) in 12 mL of benzene 

was treated with t-BuOOH (0.23 mL, 5.5 M in decane). The mixture was allowed to stir at 

room temperature for 1 h. The solvent was then evaporated to obtain a white residue that was 

washed with pentane (3 × 5 mL) and dried under vacuum affording crystalline, analytically 

pure 11 (0.549 g, 1.023 mmol, 83.4% yield) as a white solid. X-ray quality single crystals 

were grown from a concentrated toluene solution of ToMZnOO(t-Bu) at -30 °C. 1H NMR 

(400 MHz, benzene-d6): δ 1.15 (s, 18 H, CNCMe2CH2O), 1.59 (s, 9 H, ZnOOCMe3), 3.48 (s, 

6 H, CNCMe2CH2O), 7.37 (t, 3JHH = 7.4 Hz, 1 H, para-C6H5), 7.55 (t, 3JHH = 7.6 Hz, 2 H, 

meta-C6H5), 8.32 (d, 3JHH = 7.6 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 MHz, benzene-

d6): δ 27.57 (ZnOOCMe3), 28.16 (CNCMe2CH2O), 65.69 (CNCMe2CH2O), 77.60 

(ZnOOCMe3), 81.20 (CNCMe2CH2O), 126.44 (para-C6H5), 127.34 (meta-C6H5), 136.37 

(ortho-C6H5), 142.12 (br, ipso-C6H5), 190.49 (br, CNCMe2CH2O). 11B NMR (128 MHz, 

benzene-d6): δ -17.1. 15N{1H} NMR (71 MHz, benzene-d6): δ -158.8. 17O NMR (81 MHz, 

benzene-d6, obtained from ToMZnCMe3 and 17O2): δ 284 (ZnOOCMe3), 204 (ZnOOCMe3). 

IR (KBr, cm-1): 3078 (w), 3048 (w), 2967 (m), 2927 (w), 2897 (w), 2870 (w), 1598 (s, nCN), 

1496 (w), 1464 (s), 1433 (w), 1367 (m), 1353 (s), 1278 (s), 1198 (s), 1164 (s), 963 (s), 898 

(w), 819 (w), 744 (w). Anal. Calcd. for C25H38BN3O5Zn: C, 55.94; H, 7.14; N, 7.83. Found: 

C, 55.85; H, 7.38; N, 7.83. Mp: 193-195 °C. 
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ToMZnOOCMe2Ph (12). The procedure described above for ToMZnOO(t-Bu) was used, 

starting from ToMZnH (4; 0.625 g, 1.393 mmol) and PhMe2COOH (0.28 mL, 80 % technical 

grade), affording ToMZnOOCMe2Ph (12; 0.764 g, 1.276 mmol, 91.6 %). X-ray quality single 

crystals were grown from a concentrated toluene solution of ToMZnOOCMe2Ph at -30 °C. 1H 

NMR (400 MHz, benzene-d6): δ 1.14 (s, 18 H, CNCMe2CH2O), 1.86 (s, 6 H, ZnOOCMe2Ph), 

3.48 (s, 6 H, CNCMe2CH2O), 7.18 (t, 3JHH = 7.2 Hz, 1 H, para-CMe2C6H5), 7.35 (t, 3JHH = 

7.6 Hz, 1 H, meta-CMe2C6H5), 7.38 (t, 3JHH = 8.0 Hz, 1 H, para-BC6H5), 7.54 (t, 3JHH = 7.6 

Hz, 2 H, meta-BC6H5), 7.85 (d, 3JHH = 7.6 Hz, 2 H, ortho-CMe2C6H5), 8.31 (d, 3JHH = 7.2 Hz, 

2 H, ortho-BC6H5). 13C{1H} NMR (175 MHz, benzene-d6): δ 28.19 (CNCMe2CH2O), 28.22 

(ZnOOCMe2Ph), 65.68 (CNCMe2CH2O), 81.22 (CNCMe2CH2O), 81.78 (ZnOOCMe2Ph), 

126.62 (para-BC6H5), 126.65 (para-CMe2C6H5), 127.01 (ortho-CMe2C6H5), 127.35 (meta-

BC6H5), 127.92 (meta-CMe2C6H5), 136.36 (ortho-C6H5), 140.94 (br, ipso-C6H5), 149.80 

(ipso-CMe2C6H5), 190.58 (br, CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ -17.2. 

15N{1H} NMR (71 MHz, benzene-d6): δ -158.1. IR (KBr, cm-1): 3080 (w), 3047 (w), 2968 

(m), 2929 (w), 2901 (w), 2870 (w), 1595 (s, νCN), 1494 (w), 1462 (m), 1446 (w), 1432 (w), 

1386 (w), 1367 (m), 1351 (m), 1275 (s), 1197 (s), 1165 (s), 1104 (w), 1073 (w), 1029 (w), 

956 (s), 902 (w), 843 (w), 818 (w), 762 (w), 746 (w), 699 (w), 662 (w), 639 (m), 629 (m), 

552 (m), 480 (m). Anal. Calcd. for C30H40BN3O5Zn: C, 60.17; H, 6.73; N, 7.02. Found: C, 

59.98; H, 6.48; N, 7.02. Mp: 168-170 °C. 

(k2-ToM)2Zn (14). ToMZnH (0.250 g, 0.557 mmol) and Tl[ToM] (0.327 g, 0.557 mmol) were 

dissolved in benzene (15 mL) and heated to 85 °C for 48 h. A shiny metallic black precipitate 

appeared during the course of the reaction. A colorless solution was obtained upon filtration. 

Removal of the volatiles materials from the filtrate gave a white solid that was washed with 



www.manaraa.com

	   126	  

pentane (3 × 5 mL) and dried under vacuum, affording analytically pure bis(k2-ToM)Zn 

(0.417 g, 0.502 mmol, 90.1%) as a white powdery solid. X-ray quality single crystals were 

grown from a slow pentane diffusion into a concentrated toluene solution of 14 at -30 °C. 1H 

NMR (benzene-d6, 400 MHz): δ 0.94 (s, 6 H, CNCMe2CH2O), 1.12 (s, 6 H, CNCMe2CH2O), 

1.23 (s, 6 H, CNCMe2CH2O), 1.31 (s, 18 H, CNCMe2CH2O), 3.29-3.38 (m, 6 H, 

ZnNCMe2CH2O), 3.51 (d, 3JHH = 8.4 Hz, 2 H, ZnNCMe2CH2O), 3.69 (s, 4 H, 

CNCMe2CH2O), 7.25 (t, 3JHH = 7.2 Hz, 2 H, para-C6H5), 7.44 (t, 3JHH = 7.2 Hz, 4 H, meta-

C6H5), 8.05 (d, 3JHH = 7.2 Hz, 4 H, ortho-C6H5). 13C{1H} NMR (benzene-d6, 100 MHz): δ 

25.80 (ZnNCMe2CH2O), 27.84 (ZnNCMe2CH2O), 28.64 (ZnNCMe2CH2O), 28.66 

(ZnNCMe2CH2O), 29.57 (CNCMe2CH2O), 66.44 (ZnNCMe2CH2O), 67.30 (ZnNCMe2CH2O), 

68.32 (CNCMe2CH2O), 77.35 (CNCMe2CH2O), 78.67 (ZnNCMe2CH2O), 79.18 

(ZnNCMe2CH2O), 126.15 (para-C6H5), 127.74 (meta-C6H5), 134.56 (ortho-C6H5), 147.40 

(ipso-C6H5), 194 (br, CNCMe2CH2O). 11B NMR (benzene-d6, 128 MHz): δ 17.0. 15N{1H} 

NMR (benzene-d6, 71 MHz): δ -120.6 (CNCMe2CH2O), -178.9 (CN(Zn)CMe2CH2O). IR 

(KBr, cm-1): 2966 (s), 2928 (w), 2878 (w), 1604 (m, νCN), 1560 (s, νCN), 1490 (w), 1464 (m), 

1432 (w), 1369 (m), 1359 (m), 1278 (m), 1250 (m), 1199 (m), 1152 (m), 1002 (s), 969 (s), 

892 (w), 848 (w). Anal. Calcd. for C42H58B2N6O6Zn: C, 60.78; H, 7.04; N, 10.13. Found: C, 

60.91; H, 7.38; N, 9.95. Mp 190-195 °C (dec). 

(ToMZnOH)3 (15). A benzene solution of ToMZnOOEt (0.210 g, 0.413 mmol) was 

photolyzed in a Rayonet chamber at 350 nm for 24 h at ambient temperature. Colorless, X-

ray quality crystals were formed during the photolysis. The crystals were isolated by 

decantation of the supernatant solution. Further grinding and washing with pentane (3 × 5 
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mL) followed by drying under reduced pressure provided analytically pure ToMZnOH (0.123 

g, 0.265 mmol, 64.1%) as a trimeric species. 1H NMR (400 MHz, methylene chloride-d2, 

25 °C): δ 1.26 (s, br, 18 H, CNCMe2CH2O), 3.88 (s, br, 6 H, CNCMe2CH2O), 7.13 (m, 3 H, 

para and meta-C6H5), 7.24 (d, 3JHH = 6.4 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 MHz, 

methylene chloride-d2, 25 °C): δ 29.59 (CNCMe2CH2O), 66.78 (CNCMe2CH2O), 79.19 

(CNCMe2CH2O), 125.92 (para-C6H5), 127.88 (meta-C6H5), 133.57 (ortho-C6H5), 149.42 (br, 

ipso-C6H5), 191.09 (br, CNCMe2CH2O). 11B NMR (128 MHz, methylene chloride-d2): δ -

18.2. 15N{1H} NMR (71 MHz, methylene chloride-d2, 25 °C): δ -160.7. IR (KBr, cm-1): 3069 

(w), 2969 (m), 2930 (w), 1623 (m, νCN), 1577 (s, νCN), 1492 (w), 1462 (m), 1433 (w), 1383 

(w), 1367 (m), 1280 (m), 1197 (m), 1160 (m), 1121 (w), 999 (s), 970 (s), 944 (m) 879 (w), 

846 (w), 732 (m), 706 (m), 651 (w). Anal. Calcd. for C63H90B3N9O9Zn3: C, 54.28; H, 6.51; N, 

9.04. Found: C, 54.22; H, 6.30; N, 8.69. Mp 260-263 °C. 

General synthesis of BnMe2SiOOR (R=Et, i-C3H7, t-Bu). BnMe2SiH (0.012 g, 0.08 mmol) 

and ToMZnOOR (0.02 mmol) were allowed to react in benzene-d6 (0.6 mL). Upon 

completion of the reaction (R = Et, 2 h; R = i-C3H7, 6 h; R = t-Bu, 12 h at 80 °C), the 

products were identified and characterized by 1H, 13C{1H} and 29Si NMR spectroscopy. 

Equimolar ToMZnH and BnMe2SiOOR were formed in each reaction. Additionally, the 

products' spectra were not equivalent with spectra of BnMe2SiH starting material and 

BnMe2SiOR (synthesized below).  

General synthesis of BnMe2SiOR (R=Et, i-C3H7, t-Bu). BnMe2SiH (0.014 g, 0.09 mmol) 

and ROH (equimolar with respect to BnMe2SiH) were added to ToMZnH (5 mg, 0.01 mmol) 

dissolved in benzene-d6 (0.6 mL). The resulting solution was heated in a Teflon-valved NMR 
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tube (R = Et, 60 °C, 4 h; R = i-C3H7, 80 °C, 10 h; R = t-Bu, 135 °C, 65 h). Upon completion 

of the reaction, the products were identified and characterized based on their 1H, 13C{1H} and 

29Si NMR spectra. 

BnMe2SiOOEt. 1H NMR (600 MHz, C6D6): δ 0.14 (s, 6 H, SiMe2), 1.04 (t, 3 H, 3JHH = 7.2 

Hz, OOCH2CH3), 2.26 (s, 2 H, PhCH2), 3.91 (q, 2 H, 3JHH = 7.2 Hz, OOCH2CH3), 7.06 (m, 3 

H, para- and meta-C6H5), 7.15 (m, 2 H, ortho-C6H5). 13C{1H} NMR (150 MHz, C6D6): δ -

2.93 (SiMe2), 13.70 (SiOCH2CH3), 25.70 (PhCH2), 72.76 (SiOCH2CH3), 125.14 (para-

C6H5), 129.01 (meta-C6H5), 129.22 (ortho-C6H5), 139.12 (ipso-C6H5). 29Si NMR (120 MHz, 

C6D6): δ 21.63.  

BnMe2SiOEt. 1H NMR (600 MHz, C6D6): δ 0.01 (s, 6 H, SiMe2), 1.05 (t, 3 H, 3JHH = 7.2 

Hz, OCH2CH3), 2.06 (s, 2 H, PhCH2), 3.44 (q, 2 H, 3JHH = 7.2 Hz, OCH2CH3), 7.0 (m, 3 H, 

para- and meta-C6H5), 7.13 (m, 2 H, ortho-C6H5). 13C{1H} NMR (150 MHz, C6D6): δ -1.96 

(SiMe2), 19.09 (SiOCH2CH3), 27.34 (PhCH2), 58.85 (SiOCH2CH3), 124.92 (para-C6H5), 

128.94 (meta-C6H5), 129.08 (ortho-C6H5), 139.91 (ipso-C6H5). 29Si NMR (120  MHz, C6D6): 

δ 12.50. 

BnMe2SiOO(i-C3H7). 1H NMR (600 MHz, C6D6): δ 0.15 (s, 6 H, SiMe2), 1.11 (d, 6 H, 

3JHH = 6.0 Hz, OOCHMe2), 2.27 (s, 2 H, PhCH2), 4.13 (sept, 1 H, 3JHH = 6.0 Hz, 

OOCHMe2), 7.05 (m, 3 H, para- and meta-C6H5), 7.14 (m, 2 H, ortho-C6H5). 13C{1H} NMR 

(150 MHz, C6D6): δ -2.79 (SiMe2), 20.70 (OCHMe2), 25.80 (PhCH2), 78.19 (SiOCHMe2), 

125.11 (para-C6H5), 128.99 (meta-C6H5), 129.24 (ortho-C6H5), 139.23 (ipso-C6H5). 29Si 

NMR (120 MHz, C6D6): δ 21.26. 
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BnMe2SiO(i-C3H7). 1H NMR (600 MHz, C6D6): δ 0.05 (s, 6 H, SiMe2), 1.07 (d, 6 H, 3JHH 

= 6.0 Hz, OCHMe2), 2.11 (s, 2 H, PhCH2), 3.80 (sept, 1 H, 3JHH = 6.0 Hz, OCHMe2), 7.03 

(m, 3 H, para- and meta-C6H5), 7.16 (m, 2 H, ortho-C6H5). 13C{1H} NMR (150 MHz, C6D6): 

δ -1.32 (SiMe2), 26.37 (OCHMe2), 27.84 (PhCH2), 65.56 (SiOCHMe2), 124.90 (para-C6H5), 

128.89 (meta-C6H5), 129.12 (ortho-C6H5), 140.01 (ipso-C6H5). 29Si NMR (120 MHz, C6D6): 

δ 10.38.  

BnMe2SiOO(t-Bu). 1H NMR (600 MHz, C6D6): δ 0.16 (s, 6 H, SiMe2), 1.21 (s, 9 H, 

OCMe3), 2.28 (s, 2 H, PhCH2), 7.07 (m, 3 H, para- and meta-C6H5), 7.14 (m, 2 H, ortho-

C6H5). 13C{1H} NMR (150 MHz, C6D6): δ -2.55 (SiMe2), 25.80 (PhCH2), 26.55 (SiOCMe3), 

81.41 (SiOCMe3), 125.08 (para-C6H5), 128.80 (meta-C6H5), 129.19 (ortho-C6H5), 139.48 

(ipso-C6H5). 29Si NMR (120 MHz, C6D6): δ 20.45.  

BnMe2SiO(t-Bu). 1H NMR (600 MHz, C6D6): δ 0.10 (s, 6 H, SiMe2), 1.16 (s, 9 H, 

OCMe3), 2.14 (s, 2 H, PhCH2), 7.04 (m, 3 H, para- and meta-C6H5), 7.17 (m, 2 H, ortho-

C6H5). 13C{1H} NMR (150 MHz, C6D6): δ 1.09 (SiMe2), 29.49 (PhCH2), 32.47 (SiOCMe3), 

65.56 (SiOCMe3), 125.02 (para-C6H5), 128.80 (meta-C6H5), 129.19 (ortho-C6H5), 140.42 

(ipso-C6H5). 29Si NMR (120 MHz, C6D6): δ 4.35.  

Kinetic experiments of ToMZnEt + O2. Reactions were monitored with 1H NMR 

spectroscopy using a Bruker DRX-400 spectrometer. The concentrations of NMR-active 

reactants, initiators and products were determined by comparison of corresponding integrated 

resonances to the known concentration of the internal standards. The experiments were 

performed under pseudo-first order conditions with excess O2, and the [ToMZnEt] was 

monitored for at least three half lives. 
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Determination of rate dependence on [AIBN]. A benzene-d6 stock solution was prepared 

to contain known concentrations of cyclooctane (5.2 mM) as an internal standard and 

ToMZnEt (25 mM). An experiment was initiated by adding a known quantity of AIBN to a 

measured volume (0.6 mL) of the stock solution; the [AIBN] was then verified by 

comparison with the internal standard in the integrated 1H NMR spectrum. The resulting 

solution was pressurized with O2 (50 psi) in a high-pressure NMR tube using a high-pressure 

manifold. The mixture was shaken vigorously and then inserted into a NMR probe that was 

pre-heated to 54 °C. The [AIBN] was varied from 5.4 mM to 31.5 mM. The integrated 

intensities of ToMZnEt were measured over the reaction time-course. For each experiment, 

the -d[ToMZnEt]/dt followed an exponential decay (Figure S-1) to give kobs. The half-order 

dependence on [AIBN] was obtained by a non-weighted linear least squares fit of the kobs 

values against [AIBN]1/2. (Figure S-2). 
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� S-8 

Figure S-1. Exponential decay plot of [ToMZnEt] (2) vs. time in its reaction with O2 (50 psi) in 
the presence of AIBN. 
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Determination of rate dependence on PO2. A benzene-d6 stock solution containing 

cyclooctane (9.6 mM), ToMZnEt (33 mM) and AIBN (14.1 mM) was prepared. A known 

volume of this solution (0.6 mL) was added to a thick-walled J. Young NMR tube. The tube 

was charged with a measured pressure of O2 (30 psi – 100 psi) using a high-pressure 

manifold. The tube was shaken vigorously and then placed in a pre-heated NMR 

spectrometer probe (54 °C). The integrated intensities of ToMZnEt were measured over the 

� S-9 

Figure S-2. A plot of [AIBN]1/2 vs. kobs for the reaction of ToMZnEt and O2. 
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reaction time-course. The observed pseudo-first-order rate constants kobs, determined from 

non-linear least square analysis, were identical within error for each O2 pressure (Figure S-3). 

 

General description of 1H NMR kinetic experiments for the reactions between 

ToMZnOOR and P(p-C6H4Me)3. A toluene-d8 stock solution containing known 

concentrations of cyclooctane (9.9 mM) and ToMZnOOR (20 mM) was prepared. A measured 

quantity of this stock solution (0.6 mL) was placed in a septa-capped NMR tube, and the tube 

was cooled to -78 °C. Tris(para-tolyl)phosphine was dissolved in a minimal amount (50 µL) 

� S-10 

Figure S-3. A plot of kobs/[AIBN]1/2 vs. O2 pressure (psi). The reactions were performed at 54 °C 
in benzene-d6; each experiment was performed under pseudo-first order conditions (50 psi O2) 
and each point showed pseudo-first order dependence on [ToMZnEt] for three half-lives. 
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of toluene-d8, and this solution was added through the septa using a microliter syringe, and 

the hole was sealed with silicone grease. The sample was placed in a pre-cooled NMR 

spectrometer probe. Single scan spectra were acquired automatically at preset time intervals. 

The concentrations of ToMZnOOR, P(p-C6H4Me)3, and OP(p-C6H4Me)3 were determined by 

comparison of corresponding integrated resonances to the known concentration of the 

internal standard. The second order rate constants (kobs) were obtained by a non-weighted 

linear least-squares fit of the data to the second-order rate law:  

 

 (Figures S-4 to S-8). 

  

ln
P(p - C6H4Me)3⎡⎣ ⎤⎦

ToMZnOOR⎡⎣ ⎤⎦
= ln

P(p - C6H4Me)3⎡⎣ ⎤⎦o

ToMZnOOR⎡⎣ ⎤⎦o

+ kobsΔot    (6)
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� S-11 

Figure S-4. A second-order plot of ln{[P(p-tolyl)3]/[ToMZnOOEt]}/�o vs. time for the reaction 
of ToMZnOO(Et) and tris(para-tolyl)phosphine at 259 K. The slope of curve obtained from the 
linear least squares fit of the data equals kobs (8.8 ± 0.3 � 10-2 M-1s-1). 
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� S-12 

Figure S-5. A second-order plot of ln{[P(p-tolyl)3]/[ToMZnOO(i-C3H7)]}/�o vs. time for the 
reaction of ToMZnOO(i-C3H7) and tris(para-tolyl)phosphine at 259 K. The slope of curve 
obtained from the linear least squares fit of the data equals kobs (6.3 ± 0.2 � 10-3 M-1s-1). 
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� S-13 

Figure S-6. A second-order plot of ln{[P(p-tolyl)3]/[ToMZnOO(n-C3H7)]}/�o vs. time for the 
reaction of ToMZnOO(n-C3H7) and tris(para-tolyl)phosphine at 259 K. The slope of curve 
obtained from the linear least squares fit of the data equals kobs (7.5 ± 0.2 � 10-2 M-1s-1). 
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� S-14 

Figure S-7. A second-order plot of ln{[P(p-tolyl)3]/[ToMZnOO(t-Bu)]}/�o vs. time for the 
reaction of ToMZnOO(t-Bu) and tris(para-tolyl)phosphine at 294 K. The slope of curve obtained 
from the linear least squares fit of the data equals kobs (1.22 ± 0.04 � 10-3 M-1s-1). 
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� S-15 

Figure S-8. Representative second-order plots for the reaction of ToMZnOOEt and tris(para-
tolyl)phosphine at 232.5, 249.2 259.3, 267.9 and 275.4 K. The slope of the linear-least squares 
best fit curves corresponds to observed rate constants: kobs

232.5K = 9.6 ± 0.3 � 10-3 M-1s-1; kobs
249.2K 

= 3.0 ± 0.1 � 10-2 M-1s-1; kobs
259.3K = 8.8 ± 0.3 � 10-2 M-1s-1; kobs

267.9K = 1.65 ± 0.05 � 10-1 M-1s-1; 
kobs

275.4K = 2.27 ± 0.07 � 10-1 M-1s-1. 
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� S-16 

Figure S-9. An Eyring plot showing temperature dependence of tris(para-tolyl)phosphine 
oxidation by ToMZnOOEt. From the slope and intercept of the plot, �H‡ = 9.5 ± 0.3 kcal�mol-1 
and �S‡ = -27 ± 1 cal�mol-1�K-1. 
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General description of 1H NMR kinetic experiments for the reactions between 

ToMZnOOR and BnMe2SiH. A toluene-d8 stock solution containing known concentrations 

of cyclooctane (15.7 mM) and ToMZnOOEt (20.7 mM) was prepared. A measured quantity of 

this stock solution (0.6 mL) was placed in a septa-capped NMR tube, and the tube was 

cooled to -78 °C. BnMe2SiH (100 mM) was added through the septa using a microliter 

syringe, and the hole was sealed with silicone grease. The sample was placed in a pre-cooled 

NMR spectrometer probe. Single scan spectra were acquired automatically at preset time 

intervals. The concentrations of ToMZnOOEt, BnMe2SiH, ToMZnH, and BnMe2SiOOEt were 

determined by comparison of the corresponding integrated resonances to the known 

concentration of the internal standard. The second order rate constants (kobs) were obtained 

by a non-weighted linear least-squares fit of the data to the second-order rate law:  

 

 

 

ln
BnMe2SiH⎡⎣ ⎤⎦
ToMZnOOEt⎡⎣ ⎤⎦

= ln
BnMe2SiH⎡⎣ ⎤⎦o
ToMZnOOEt⎡⎣ ⎤⎦o

+ kobsΔot     (7)
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� S-17 

Figure S-10. Representative second-order plots for the reaction of ToMZnOOEt and BnMe2SiH 
to give BnMe2SiOOEt and ToMZnH (13). kobs

288.8K = 3.9 ± 0.2 � 10-3 M-1s-1; kobs
295.7K = 5.6 ± 0.3 

� 10-3 M-1s-1; kobs
301.5K = 8.1 ± 0.4 � 10-3 M-1s-1; kobs

309.9K-MEAN = 1.6 ± 0.5 � 10-2 M-1s-1; kobs
320.3K 

= 3.7 ± 0.2 � 10-2 M-1s-1. 
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� S-18 

Figure S-11. Eyring plot showing temperature dependence of the reaction of ToMZnOOEt and 
BnMe2SiH to give ToMZnH and BnMe2SiOOEt. �H‡ = 12.6 ± .7 kcal�mol-1; �S‡ = -26 ± 2 
cal�mol-1K-1. 
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Figure S-13. ORTEP diagram of ToMZn(n-C3H7) (3). Ellipsoids are drawn at 35% 
probability. Hydrogen atoms and disordered toluene solvent are not shown for clarity. 

 

 

 

 

 

 

� S-20 

Figure S-13. ORTEP diagram of ToMZn(n-C3H7) (3). Ellipsoids are drawn at 35% probability. 
Hydrogen atoms and disordered toluene solvent are not shown for clarity. 
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Figure S-14. ORTEP diagram of ToMZn(t-Bu) (5). Ellipsoids are drawn at 35% probability. 
Hydrogen atoms are not shown for clarity. 

 

 

 

 

 

 

� S-21 

Figure S-14. ORTEP diagram of ToMZn(t-Bu) (5). Ellipsoids are drawn at 35% probability. 
Hydrogen atoms are not shown for clarity. 
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Figure S-15. ORTEP diagram of ToMZnPh (6). Ellipsoids are drawn at 35% probability. 
Hydrogen atoms and a tetrahydrofuran solvent molecule are not shown for clarity. 

 

 

 

 

 

 

 

� S-22 

Figure S-15. ORTEP diagram of ToMZnPh (6). Ellipsoids are drawn at 35% probability. 
Hydrogen atoms and a tetrahydrofuran solvent molecule are not shown for clarity. 
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Figure S-16. ORTEP diagram of ToMZnCH2Ph (7). Ellipsoids are drawn at 35% probability. 
The unit cell contains two independent molecules of ToMZnCH2Ph and a co-crystallized 
toluene molecule. One of the independent ToMZnCH2Ph is illustrated. Hydrogen atoms and a 
toluene solvent molecule are not shown for clarity. 

 

 

 

� S-23 

Figure S-16. ORTEP diagram of ToMZnCH2Ph (7). Ellipsoids are drawn at 35% probability. The 
unit cell contains two independent molecules of ToMZnCH2Ph and a co-crystallized toluene 
molecule. One of the independent ToMZnCH2Ph is illustrated. Hydrogen atoms and a toluene 
solvent molecule are not shown for clarity. 
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Figure S-18. ORTEP diagram of ToMZnOO(n-C3H7) (9). Ellipsoids are drawn at 35% 
probability. The n-propylperoxide group, beginning at the O5. The disorder was modeled 
over two positions to give two chemically reasonable OCH2CH2CH3 chains, labeled A and B. 
For clarity, hydrogen atoms and the A chain (O5a, C23a, C24a, and C25a) are not shown for 
clarity. 

 

 

 

 
 

 

� S-25 

Figure S-18. ORTEP diagram of ToMZnOO(n-C3H7) (9). Ellipsoids are drawn at 35% 
probability. The n-propylperoxide group, beginning at the O5. The disorder was modeled over 
two positions to give two chemically reasonable OCH2CH2CH3 chains, labeled A and B. For 
clarity, hydrogen atoms and the A chain (O5a, C23a, C24a, and C25a) are not shown for clarity. 
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Figure S-19. ORTEP diagram of ToMZnOO(i-C3H7) (10). Ellipsoids are drawn at 35% 
probability. Only the hydrogen atoms bonded to the isopropyl methine carbon is illustrated 
for clarity. 

 

 

 

 

� S-26 

Figure S-19. ORTEP diagram of ToMZnOO(i-C3H7) (10). Ellipsoids are drawn at 35% 
probability. Only the hydrogen atoms bonded to the isopropyl methine carbon is illustrated for 
clarity. 
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Figure S-20. ORTEP diagram of ToMZnOO(t-Bu) (11). Ellipsoids are drawn at 35% 
probability. Hydrogen atoms are not shown for clarity. 

 

 

 

 

 

 

 

� S-27 

Figure S-20. ORTEP diagram of ToMZnOO(t-Bu) (11). Ellipsoids are drawn at 35% probability. 
Hydrogen atoms are not shown for clarity. 
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Figure S-21. ORTEP diagram of ToMZnOOCMe2Ph (12). Ellipsoids are drawn at 35% 
probability. Hydrogen atoms are not shown for clarity. 

 

 

 

 

 

 

 

� S-28 

Figure S-21. ORTEP diagram of ToMZnOOCMe2Ph (12). Ellipsoids are drawn at 35% 
probability. Hydrogen atoms are not shown for clarity. 
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Figure S-22. ORTEP diagram of (ToM)2Zn (14). Ellipsoids are drawn at 35% probability. 
Hydrogen atoms and two toluene solvent molecules are not shown for clarity. 

 

 

 

 

 

� S-29 

Figure S-22. ORTEP diagram of (ToM)2Zn (14). Ellipsoids are drawn at 35% probability. 
Hydrogen atoms and two toluene solvent molecules are not shown for clarity. 
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Chapter 6: Divergent reaction pathways of tris(oxazolinyl)borato zinc and magnesium 
silyl compounds 

 
Modified from a paper published in Chemical Communications‡ 
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This work has been carried out in collaboration with other people in our lab. 

 

Abstract. 

Synthesis and reactivity of monomeric magnesium and zinc silyl compounds ToMM–

Si(SiHMe2)3 and ToMM–Si(SiMe3)3 are described (ToM = tris(4,4-dimethyl-2-

oxazolinyl)phenylborate). The magnesium compounds react slowly with water and air, while 

the zinc compounds are inert. With CO2, ToMMg–Si(SiHMe2)3 provides 

ToMMgO2CSi(SiHMe2)3 through CO2 insertion, whereas ToMZn–Si(SiHMe2)3 affords 

ToMZnOCHO. 

----------------------------------------------------------------------- 

 Other Author’s contributions 

Nicole L. Lampland: Synthesis and characterization of HO2CSi(SiHMe2)3; Independent 

synthesis and characterization of ToMMO2CSi(SiHMe2)3 using HO2CSi(SiHMe2)3, DOSY-

NMR experiments and several other NMR experiments including thermal stability check and 

reactions with CO2, moisture, methanol, and HCl etc. Mechanistic study for the 

transformation of ToMZnSi(SiHMe2)3 to ToMZnOCHO from the reaction with CO2. 
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Kaking Yan: First person in our group to synthesize the silyl ligands, KSi(SiHMe2)3 and 

KSi(SiMe3)3. 

James F. Dunne: First person in our group to synthesize the magnesium starting materials, 

ToMMgBr and ToMMgMe, used in this study. Also, the first person to observe the formation 

of ToMMgOMe species in NMR-scale reaction between ToMMgMe and MeOH. 

 

 

Introduction. 

Zinc and magnesium alkyls are among the earliest and most frequently used organometallic 

compounds, whereas related metal silyls have received less attention. Magnesium and zinc-

catalyzed hydrosilylations1 and dehydrogenative silylations2 involve mixtures of 

organosilanes and these main group organometallics. However, metal silyl species are 

generally not postulated intermediates in most proposed catalytic cycles for such 

transformations, and studies of main-group metal silyl compounds have mostly focused on 

structural characterization and applications in transmetalation.3,4 Less is known about their 

reactivity in steps that might be involved in catalysis. Metal silyl compounds, supported by 

tris(oxazolinyl)borate ancillaries employed in our catalytic investigations, may provide 

further insight into catalysis, possible side reactions, and the fundamental reactivity of these 

compounds. 

Results and Discussion. 

The targeted silyl complexes ToMZnSi(SiHMe2)3 (1), ToMMgSi(SiHMe2)3 (2), 

ToMZnSi(SiMe3)3 (3) and ToMMgSi(SiMe3)3 (4) (ToM = tris(4,4-dimethyl-2-

oxazolinyl)phenylborate) are efficiently prepared by salt metathesis reactions. ToMZnCl5 or 

ToMMgBr react with the appropriate potassium silyl reagent, KSi(SiHMe2)3 or KSi(SiMe3)3,6 
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in benzene at ambient temperature (Scheme 1).  

 

 

 

 

 

Scheme 1. Synthesis of Zinc silyls and Magnesium silyls 

Compounds 1, 2 and 4 are formed quantitatively within 30 min at ambient temperature, 

whereas the preparation of compound 3 requires longer time (2 h). One set of oxazoline 

resonances was observed in the 1H NMR spectra for compounds 1–4 (as well as all the 

ToMMX compounds reported here). This pattern is consistent with time-averaged C3v-

symmetry for the complexes and suggests tridentate coordination of ToM. Downfield SiH 

chemical shifts of 1 (4.64 ppm) and 2 (4.71 ppm), high silicon–hydrogen coupling constants 

(1JSiH = 172.2 and 169.7 Hz respectively), and infrared bands assigned to the νSiH of 1 (2064 

cm−1) and 2 (2064 cm−1) are consistent with terminal, 2-center-2-electron bonded Si–H 

moieties. In addition, the infrared spectra provide support for tridentate ToM coordination by 

the single νCN band for each compound (1 and 3: 1591 cm−1; 2 and 4: 1582 cm−1). 

      Single crystal X-ray analyses of 1 (Fig. 1) and 3 further support the spectroscopically 

assigned structures.7,8 Terminal β-SiH’s in 1 are located in the difference Fourier map, but 
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the Si(SiHMe2)3 is disordered. In the model, the three SiHMe2 groups are oriented with the 

SiH’s pointing away from the zinc center and are related by pseudo-C3 rotations. 

 

 Fig. 1 ORTEP diagram of ToMZnSi(SiHMe2)3 (1) with ellipsoids plotted at 35% probability. 
One of the Si(SiHMe2)3 positions and the hydrogen atoms on ToM and Me groups are not 
illustrated for clarity. 

The Zn1–Si1 interatomic distance is slightly shorter in 1 (2.4028(5) Å) than in 3 (2.427(1) Å), 

and these distances are on the long side compared to other zinc silyls. For example, the 

Zn−Si distances in Zn(Si(SiMe3)3)2,4 ((Me3Si)3SiZnCl(thf))2,9 and (Ph(Me3Si)2SiZnCl(thf))2 

are similar (2.35 ± 0.01 Å).9 Sterically hindered groups give longer Zn–Si distances; for 

example, the distances in Zn(Si(SiMe3)2Si(SiMe3)3)2 are ~ 2.405 ± 0.002 Å.10 Q4 

          Metal silyls 1–4 are thermally resilient, and starting materials are recovered after 

heating toluene-d8 solutions in sealed NMR tubes at 170 °C for 24 h. Furthermore, the zinc 

compounds 1 and 3 are inert to reaction with O2 at pressures up to 100 psi and temperatures 

up to 120 °C for 24 h, under a 450 W Hg lamp at ambient temperature, or in the presence of 
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AIBN at 60 °C. For comparison, ToMZnH and ToMZnMe also are inert to O2, whereas 

ToMZnR compounds react with O2 following the trend (R = Et < n-C3H7 < i-C3H7 < t-Bu) to 

form isolable alkylperoxyzinc species.11 These data suggest that, despite their steric bulk, the 

resistance of 1 and 3 to oxidation may result from electronic effects associated with the ToM 

ligand. For comparison, Zn(Si(SiMe3)3)2 and Zn(Si(SiMe3)3)2TMEDA are air sensitive (the 

TMEDA adduct reacts slowly in air).4 

           Magnesium silyls 2 and 4 react slowly with 1 atm of O2 at ambient temperature over 

24 and 36 h forming mixtures of unidentified species. Under similar reaction conditions, 

ToMMgMe and O2 form (ToMMg(µ-OMe))2 (5) within 5 min.. Compound 5 is 

crystallographically characterized as a dimer containing tri-dentate tris(oxazolinyl)borate and 

bridging methoxide ligands (Fig. 2), centered on a two-fold axis.12 The 1H NMR spectrum is 

consistent with pseudo-C3v symmetry.  

 
Fig. 2 ORTEP diagram of (ToMMgOMe)2 (5) with ellipsoids plotted at 35% probability. 
Symmetry-related atoms are labelled with #. Hydrogen atoms and two benzene molecules are 
not plotted for clarity. 
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             Surprisingly, zinc silyls 1 and 3 are also inert to water and methanol. Only starting 

materials are detected after attempted thermolysis of 1 or 3, benzene-d6, and excess water at 

80 °C for 12 h. 1 and 3 are insoluble in pure water, and the 1H NMR spectra of the solids 

recovered from water and redissolved in benzene-d6 contain only signals assigned to the zinc 

silyls. Similarly, 1 and 3 are insoluble in methanol at room temperature. A suspension of 1 

partly dissolves in methanol-d4 after heating at 60 °C for 4 h. The 1H NMR spectrum of the 

resulting solution contained silyl and oxazoline resonances for 1 that are distinct from 

HSi(SiHMe2)3 and ToMZnOMe. Additionally, the 1H NMR spectrum (acquired in benzene-

d6) of the solid recovered from methanol contained only signals assigned to 1. This inert 

nature 5 contrasts the reactions of ToMZnR (R = H, alkyl, phenyl) and H2O that provide a 

trimeric hydroxide (ToMZnOH)3.11 Addition of 12 M HCl to a benzene-d6 solution of 1, 

however, produces HSi(SiHMe2)3. The magnesium silyls 2 and 4 are hydrolytically sensitive, 

forming hydrosilanes HSi(SiHMe2)3 and HSi(SiMe3)3 10 upon treatment with water. 

Compounds 2 and 4 slowly react with methanol (2: 4 h, r.t.; 4: 5 h, r.t.) to provide 5. Note 

that ToMMgMe and methanol provide 5 quantitatively after 5 min in benzene. Interestingly, 1 

and CO2 (60 psi) react at 120 °C to form the zinc formate ToMZnOCHO (6) (t1/2 = 18 h, eqn 

(1)). The 1H NMR spectrum of 6 contained a downfield singlet resonance attributed to the 

ZnOCHO (8.76 ppm); a similar signal was reported for TptBuZnOCHO (TptBu = tris(3-tert-

butyl-pyrazolyl)borate) (8.91 ppm).13 A peak at 169 ppm in the 13C{1H} NMR spectrum of 6 

was assigned to the formate carbon. 
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(1)	    
 

The identity of compound 6 is further supported by its independent preparation from 

ToMZnH and CO2 (1 atm) in benzene at ambient temperature. Two new bands in the solid-

state infrared spectrum of 6 at 1629 and 1307 cm−1 are assigned to the νCO(asym) and νCO(sym) 

of the [Zn]OCHO moiety; the ΔνCO of 322 cm−1 suggests monodentate formate 

coordination.14 For comparison, the assigned bands for TptBuZnOCHO are 1655 and 1290 

cm−1 (ΔνCO = 365 cm−1), and the bands for TptmZnOCHO are 1621 and 1317 cm−1 (ΔνCO = 

304 cm−1, Tptm = tris(2-pyridylthio)methane).15 

        An X-ray structure determination provides additional characterization of 6 (Fig. 3).16 

The zinc–oxygen distances associated with the formate moiety are inequivalent (Zn1–O4, 

1.909(1); Zn1–O5, 2.792 Å). The first distance is equal to the sum of covalent radii of Zn–O 

(1.9 Å),17 and the latter distance is slightly shorter than the sum of van der Waal radii (2.91 

Å). For comparison, the Zn–O distance in monomeric ToMZnOtBu is 1.835(1) Å,5 whereas 

the distance in TptmZnOCHO is 2.036(1) Å.15 
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Fig. 3 ORTEP diagram of ToMZnOCHO (6), with ellipsoids plotted at 35% probability. Only 
the formate hydrogen atom is illustrated. 

 

        Interestingly, reactions of CO2 with isostructural 1 and 2 provide dissimilar products. 

CO2 (1 atm) reacts with 2 at ambient temperature in benzene to give ToMMgO2CSi(SiHMe2)3 

(7) quantitatively over 24 h (eqn (2)). 
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NMR resonance at 202.61 ppm is assigned to the silanecarboxylate MgOC(O)Si(SiHMe2)3. 

This value is similar to those of other metal silanecarboxylates, such as monomeric 

Mo(=NAryl)(=CHCMe2Ph){O2CSi(SiMe3)3}2 (211.4 ppm, Aryl = 2,6-C6(i-C3H7)2H3)18 and 

(Cp2Sc{µ-O2CSi(SiMe3)3})2 (200.81 ppm).19 Unfortunately, X-ray diffraction experiments 

on 7 were unsuccessful, and the IR bands associated with silanecarboxylate were not 

assigned. Compound 7 was characterized as a monomeric species by DOSY experiments that 

reveal similar diffusion constants of monomeric 2 (6.95 × 10−10 m2 s−1) and 7 (6.85 × 10−10 

m2 s−1) (See Experimental section). 

Compound 7 is thermally robust, and the starting material is unchanged after a benzene-d6 

solution is heated at 120 °C for 12 h. During the conversion of 2 to 7, signals assigned to 

those two compounds are the only ones observed in the 1H NMR spectra of reaction mixtures. 

In contrast, Cp2Zr(η2-SiMe2 Nt-Bu) and CO2 react to give the decarbonylated product 

[Cp2Zr(µ-O-κ2-O,N-OSiMe2NtBu)]2 and CO.20 The dimeric silanecarboxylate (Cp2Sc{µ-

O2CSi(SiMe3)3})2 is unchanged after  60 h at 95 °C.19 However, a side-product, postulated to 

be Cp2ScOSi(SiMe3)3, is formed during the reaction of Cp2ScSi(SiMe3)3THF and CO2. This 

species may form from Cp2ScO2CSi(SiMe3)3 prior to dimerization. 

       Additional evidence for Si–C bond formation is provided by the reaction of 7 and MeOH, 

which gives compound 5 and HO2CSi(SiHMe2)3 (8). Compounds 7 and 8 are characterized 

by their independent preparation: 8 is synthesized by adapting a literature procedure for 

HO2CSi(SiMe3)3.21 Compound 7 is independently prepared from ToMMgMe and 8. The 

identical spectroscopic properties of the two species support the assignment of 7 as a 

silanecarboxylate. 
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     ToMZnO2CSi(SiHMe2)3 (9) is a possible intermediate in the formation of 6 from 2. 

Therefore, the zinc silanecarboxylate ToMZnO2CSi(SiHMe2)3 was prepared from ToMZnEt 

and 8. The 13C{1H} NMR spectrum of 9 contained a resonance at 193.38 ppm assigned to the 

carboxylate. The diffusion constant 6.43 × 10−10 m2 s−1 obtained from a DOSY experiment in 

benzene-d6 indicated that 9 is monomeric in solution. Thermolysis of 9 at 120 °C for 12 h 

under a N2 atmosphere returns starting material unchanged. However, thermal treatment of 9 

under 60 psi of CO2 at 120 °C affords the formate 6 (t1/2 = 6 h). Thus, a plausible and 

kinetically competent pathway for the formation of 6 is shown in Scheme 2, although 9 is not 

detected in the reaction mixture and our current evidence does not rule out a one step 

pathway. We are currently investigating this transformation to better understand the route(s) 

to compound 6. 

 

Scheme 2 A possible pathway for the formation of ToMZnOCHO from 1 and CO2. 

 

Conclusion. 

       Still, the dichotomic reactivity of isostructural zinc and magnesium silyls and 

silylcarboxylates toward carbon dioxide is intriguing. In addition, the reaction of zinc 

silylcarboxylate 9 with CO2 provides a new fundamental step that could be applied in 

catalytic CO2 conversions. 

ToMZn Si
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Experimental data 

General Procedures. All reactions were performed under a dry argon atmosphere using 

standard Schlenk techniques or under a nitrogen atmosphere in a glovebox, unless otherwise 

indicated. Benzene, toluene, pentane, diethyl ether, and tetrahydrofuran were dried and 

deoxygenated using an IT PureSolv system. Benzene-d6 was heated to reflux over Na/K alloy 

and vacuum-transferred. The starting materials (TMEDA)MgMeBr,1 H[ToM],2 ToMMgMe,3 

ToMZnCl,4 Si(SiHMe2)4,5 and KSi(SiMe3)3
6 were synthesized according to literature 

procedures. 1H, 13C{1H}, 29Si and 11B NMR spectra were collected on Agilent MR-400, 

Bruker DRX400 or AVIII 600 spectrometers. 11B NMR spectra were referenced to an 

external BF3OEt2 standard. 29Si NMR spectra were acquired with INEPT sequences and 

referenced to an external SiMe4 standard. 15N chemical shifts were determined by 1H-15N 

HMBC experiments on a Bruker AVII 600 spectrometer with a Bruker Z-gradient inverse 

TXI 1H/13C/15N 5mm cryoprobe; 15N chemical shifts were originally referenced to an 

external liquid NH3 standard and recalculated to the CH3NO2 chemical shift scale by adding 

−381.9 ppm. Elemental analyses were performed using a Perkin-Elmer 2400 Series II CHN/S 

by the Iowa State Chemical Instrumentation Facility. X-ray diffraction data was collected on 

a Bruker APEX II diffractometer. 

Caution! High-pressure glass apparatuses must be handled with care. Thick-walled NMR 

tubes equipped with J. Young-style resealable Teflon valves (pressured to 100 psi with CO2) 

were obtained from Wilmad-Labglass and attached to a high-pressure steel manifold through 

commercial Swagelock fittings. The pressurized NMR tubes were handled in protective 
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jackets. 

ToMMgBr(THF)2. H[ToM] (0.100 g, 4.25 mmol) and (TMEDA)MgMeBr (0.163 g, 4.25 

mmol) were dissolved in THF and stirred for 30 min at ambient temperature. The volatile 

materials were evaporated, the residue was washed with pentane (3 × 5 mL), and the 

resulting white solid was dried under vacuum to provide ToMMgBr(THF)2 (0.230 g, 0.365 

mmol, 85.8%). Analytically pure ToMMgBr(THF)2 and X-ray quality single crystals were 

obtained from a concentrated THF solution of ToMMgBr(THF)2 at –30 °C. Additionally, the 

quantity of THF in the product can vary from zero to two equivalents; the data is given for a 

batch isolated with two equivalents of THF. 1H NMR (400 MHz, benzene-d6): δ 1.06 (s, 18 

H, CNCMe2CH2O), 1.42 (t, 3JHH = 6.6 Hz, 8 H, β-THF), 3.36 (s, 6 H, CNCMe2CH2O), 3.58 

(t, 3JHH = 6.6 Hz, 8 H, α-THF), 7.36 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 7.53 (t, 3JHH = 7.2 Hz, 

2 H, meta-C6H5), 8.23 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (benzene-d6, 175 

MHz): δ 26.15 (β-THF), 28.44 (CNCMe2CH2O), 65.64 (CNCMe2CH2O), 68.17 (α-THF), 

80.80 (CNCMe2CH2O), 126.54 (para-C6H5), 127.32 (meta-C6H5), 136.32 (ortho-C6H5), 

142.84 (br, ipso-C6H5), 191.30 (br, CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ –

18.2. 15N NMR: δ –160.9. IR (KBr, cm−1): 3050 (m), 2972 (s), 2873 (m), 1599 (s, νCN), 1492 

(w), 1462 (s), 1433 (m), 1389 (m), 1371 (s), 1354 (m), 1303 (m), 1273 (s), 1253 (m), 1197 

(s), 1155 (s), 1047 (s), 995 (s), 966 (s), 939 (m), 890 (m), 843 (m), 822 (w), 777 (w), 708 (m), 

695 (s), 685 (w), 666 (w), 649 (w). Anal. Calcd. for C29H45BBrMgN3O5: C, 55.23; H, 7.19; N, 

6.66. Found: C, 54.75; H, 6.70; N, 6.58. Mp: 251-253 °C. 

KSi(SiHMe2)3. Si(SiHMe2)4 (6.00 g, 0.027 mol) and KOtBu (3.95 g, 0.027 mol) were 

dissolved in benzene (25 mL). The solution was allowed to stir for 30 min, and the product 
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precipitated as a white solid during this time. The solid was isolated by filtration, washed 

with pentane, and recrystallized from toluene at –30 °C to give a white crystalline solid (5.99 

g, 0.024 mol, 90.7%). 1H NMR (benzene-d6, 600 MHz): δ 0.559 (d, 18 H, 3JHH = 4.5 Hz, 

SiHMe2), 4.22 (sept, 3 H, 3JHH = 4.5 Hz, 1JSiH = 151.8 Hz, SiHMe2). 13C{1H} NMR 

(benzene-d6, 150 MHz): δ 2.47 (SiHMe2). 29Si (benzene-d6, 119.3 MHz) δ –23.8 (SiHMe2), –

202.3 (Si(SiHMe2)3). IR (KBr, cm−1): 2959 (s), 2894 (s), 2020 (s, νSiH), 1419 (m), 1242 (s), 

1041 (s), 872 (s), 766 (m), 685 (m), 645 (m). Anal. Calcd. for C6H21KSi4: C, 29.45; H, 8.65. 

Found C, 29.20; H, 8.51. Mp 123-125 °C. 

ToMZnSi(SiHMe2)3 (1). ToMZnCl (0.235 g, 0.486 mmol) and KSi(SiHMe2)3 (0.119 g, 0.486 

mmol) were dissolved in benzene, and the reaction mixture was stirred for 30 min. The 

reaction mixture was filtered to remove KCl, the filtrate was evaporated, and the resulting 

solid residue was washed with pentane and dried under vacuum to afford ToMZnSi(SiHMe2)3 

(0.303 g, 0.464 mmol, 95.5%) as an analytically pure white solid. X-ray quality single 

crystals were grown by slow pentane diffusion into a concentrated toluene solution of 

ToMZnSi(SiHMe2)3 at –30 °C. 1H NMR (400 MHz, benzene-d6): δ 0.57 (d 3JHH = 4.4 Hz, 18 

H, SiHMe2), 1.14 (s, 18 H, CNCMe2CH2O), 3.45 (s, 6 H, CNCMe2CH2O), 4.64 (sept, 3JHH = 

4.4 Hz, 3 H, SiHMe2), 7.35 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 7.53 (t, 3JHH = 7.6 Hz, 2 H, 

meta-C6H5), 8.31 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 MHz, benzene-

d6): δ 0.16 (SiHMe2), 28.76 (CNCMe2CH2O), 66.08 (CNCMe2CH2O), 81.06 

(CNCMe2CH2O), 126.37 (para-C6H5), 127.30 (meta-C6H5), 136.46 (ortho-C6H5), 142.30 (br, 

ipso-C6H5), 190.18 (br, CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ –18.5. 29Si 

NMR (120 MHz, benzene-d6): δ –28.3 (1JSiH = 172.2 Hz, Si(SiHMe2)3), –171.3 
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(Si(SiHMe2)3). 15N NMR (59.2 MHz, benzene-d6): δ –157.4. IR (KBr, cm−1): 3079 (w), 2967 

(s), 2897 (m), 2064 (s, νSiH), 1591 (s, νCN), 1495 (w), 1462 (m), 1431 (w), 1387 (m), 1368 

(m), 1276 (s), 1241 (s), 1195 (s), 1158 (s), 961 (s), 867 (s), 747 (m), 703 (s). Anal. Calcd. for 

C27H50BSi4N3O3Zn: C, 49.64; H, 7.71; N, 6.43. Found: C, 49.21; H, 7.58; N, 6.37. Mp: 208-

210 °C. 

ToMMgSi(SiHMe2)3 (2). ToMMgBr(THF)2 (0.706 g, 1.12 mmol) and KSi(SiHMe2)3 (0.275 g, 

1.12 mmol) were dissolved in benzene (12 mL) and stirred for 30 min at ambient temperature. 

The reaction mixture was filtered, and evaporation of the filtrate gave a white solid. The solid 

was washed with pentane (3 × 5 mL) and dried under vacuum providing crystalline, 

analytically pure ToMMgSi(SiHMe2)3 (0.630 g, 1.03 mmol, 91.5%). X-ray quality single 

crystals were obtained from a concentrated toluene solution cooled to –30 °C. 1H NMR (600 

MHz, benzene- d6): δ 0.61 (d, 3JHH = 4.2 Hz, 18 H, SiHMe2), 1.13 (s, 18 H, CNCMe2CH2O), 

3.38 (s, 6 H, CNCMe2CH2O), 4.71 (sept, 3JHH = 4.2 Hz, 3 H, SiHMe2), 7.36 (t, 3JHH = 7.2 Hz, 

1 H, para- C6H5), 7.53 (t, 3JHH = 7.6 Hz, 2 H, meta-C6H5), 8.26 (d, 3JHH = 7.2 Hz, 2 H, ortho-

C6H5). 13C{1H} NMR (175 MHz, benzene-d6): δ 0.76 (SiHMe2), 28.89 (CNCMe2CH2O), 

65.91 (CNCMe2CH2O), 80.65 (CNCMe2CH2O), 126.42 (para-C6H5), 127.27 (meta-C6H5), 

136.41 (ortho-C6H5), 142.30 (br, ipso-C6H5), 192.83 (br, CNCMe2CH2O). 11B NMR (128 

MHz, benzene-d6): δ –18.2. 29Si NMR (120 MHz, benzene-d6): δ –27.2 (1JSiH = 169.7 Hz, 

Si(SiHMe2)3), –186.8 (Si(SiHMe2)3). 15N NMR (59.2 MHz, benzene-d6): δ –161.9. IR (KBr, 

cm−1): 3078 (w), 3048 (w), 2966 (s), 2054 (s, νSiH), 1582 (s, νCN), 1495 (w), 1463 (m), 1432 

(w), 1387 (w), 1369 (m), 1352 (m), 1274 (s), 1246 (m), 1194 (s), 1160 (m), 963 (s), 894 (s), 

861 (s), 832 (s), 747 (m), mmol, 95.5%) as an analytically pure white solid. X-ray quality 
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single crystals were grown by slow pentane diffusion into a concentrated toluene solution of 

ToMZnSi(SiHMe2)3 at –30 °C. 1H NMR (400 MHz, benzene-d6): δ 0.57 (d 3JHH = 4.4 Hz, 18 

H, SiHMe2), 1.14 (s, 18 H, CNCMe2CH2O), 3.45 (s, 6 H, CNCMe2CH2O), 4.64 (sept, 3JHH = 

4.4 Hz, 3 H, SiHMe2), 7.35 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 7.53 (t, 3JHH = 7.6 Hz, 2 H, 

meta-C6H5), 8.31 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 MHz, benzene-

d6): δ 0.16 (SiHMe2), 28.76 (CNCMe2CH2O), 66.08 (CNCMe2CH2O), 81.06 

(CNCMe2CH2O), 126.37 (para-C6H5), 127.30 (meta-C6H5), 136.46 (ortho-C6H5), 142.30 (br, 

ipso-C6H5), 190.18 (br, CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ –18.5. 29Si 

NMR (120 MHz, benzene-d6): δ –28.3 (1JSiH = 172.2 Hz, Si(SiHMe2)3), –171.3 

(Si(SiHMe2)3). 15N NMR (59.2 MHz, benzene-d6): δ –157.4. IR (KBr, cm−1): 3079 (w), 2967 

(s), 2897 (m), 2064 (s, νSiH), 1591 (s, νCN), 1495 (w), 1462 (m), 1431 (w), 1387 (m), 1368 

(m), 1276 (s), 1241 (s), 1195 (s), 1158 (s), 961 (s), 867 (s), 747 (m), 703 (s). Anal. Calcd. for 

C27H50BSi4N3O3Zn: C, 49.64; H, 7.71; N, 6.43. Found: C, 49.21; H, 7.58; N, 6.37. Mp: 208-

210 °C. 

ToMMgSi(SiHMe2)3 (2). ToMMgBr(THF)2 (0.706 g, 1.12 mmol) and KSi(SiHMe2)3 (0.275 g, 

1.12 mmol) were dissolved in benzene (12 mL) and stirred for 30 min at ambient temperature. 

The reaction mixture was filtered, and evaporation of the filtrate gave a white solid. The solid 

was washed with pentane (3 × 5 mL) and dried under vacuum providing crystalline, 

analytically pure ToMMgSi(SiHMe2)3 (0.630 g, 1.03 mmol, 91.5%). X-ray quality single 

crystals were obtained from a concentrated toluene solution cooled to –30 °C. 1H NMR (600 

MHz, benzene- d6): δ 0.61 (d, 3JHH = 4.2 Hz, 18 H, SiHMe2), 1.13 (s, 18 H, CNCMe2CH2O), 

3.38 (s, 6 H, CNCMe2CH2O), 4.71 (sept, 3JHH = 4.2 Hz, 3 H, SiHMe2), 7.36 (t, 3JHH = 7.2 Hz, 
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1 H, para- C6H5), 7.53 (t, 3JHH = 7.6 Hz, 2 H, meta-C6H5), 8.26 (d, 3JHH = 7.2 Hz, 2 H, ortho-

C6H5). 13C{1H} NMR (175 MHz, benzene-d6): δ 0.76 (SiHMe2), 28.89 (CNCMe2CH2O), 

65.91 (CNCMe2CH2O), 80.65 (CNCMe2CH2O), 126.42 (para-C6H5), 127.27 (meta-C6H5), 

136.41 (ortho-C6H5), 142.30 (br, ipso-C6H5), 192.83 (br, CNCMe2CH2O). 11B NMR (128 

MHz, benzene-d6): δ –18.2. 29Si NMR (120 MHz, benzene-d6): δ –27.2 (1JSiH = 169.7 Hz, 

Si(SiHMe2)3), –186.8 (Si(SiHMe2)3). 15N NMR (59.2 MHz, benzene-d6): δ –161.9. IR (KBr, 

cm−1): 3078 (w), 3048 (w), 2966 (s), 2054 (s, νSiH), 1582 (s, νCN), 1495 (w), 1463 (m), 1432 

(w), 1387 (w), 1369 (m), 1352 (m), 1274 (s), 1246 (m), 1194 (s), 1160 (m), 963 (s), 894 (s), 

861 (s), 832 (s), 747 (m), 703 (m), 689 (m), 670 (m), 650 (m), 639 (m). Anal. Calcd. for 

C27H50BN3O3Si4Mg: C, 52.98; H, 8.23; N, 6.86. Found: C, 53.14; H, 8.35; N, 6.91. Mp: 201-

203 °C. 

 (ToMMgOMe)2 (5). A benzene solution of ToMMgMe (0.300 g, 0.712 mmol) was exposed 

to O2 (1 atm) for 5 minutes in a 100 mL Schlenk flask. The flask was sealed and then 

allowed to stand for 1 h at room temperature to form crystals. White, X-ray quality crystals 

were isolated by cannula filtration. The crystals were washed with pentane (3 × 5 mL) and 

dried under vacuum providing analytically pure ToMMgOMe (0.225 g, 0.514 mmol, 72.2%). 

1H NMR (400 MHz, benzene-d6): δ 1.16 (s, 18 H, CNCMe2CH2O), 3.54 (s, 6 H, 

CNCMe2CH2O), 3.57 (s, 3 H, OMe), 7.29 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 7.49 (t, 3JHH = 

7.2 Hz, 2 H, meta-C6H5), 8.20 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 HMz, 

benzene-d6): δ 28.71 (CNCMe2CH2O), 52.51 (OMe), 66.68 (CNCMe2CH2O), 79.10 

(CNCMe2CH2O), 125.96 (para-C6H5), 127.47 (meta-C6H5), 135.29 (ortho-C6H5), 151.90 (br, 

ipso-C6H5), 189.99 (br, CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ –17.6. 15N 
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NMR (71 MHz, benzene-d6): δ –154.9. IR (KBr, cm−1): 3047 (w), 2965 (s), 2884 (s), 1595 (s, 

νCN), 1496 (w), 1465 (m), 1434 (w), 1383 (w), 1365 (m), 1349 (m), 1267 (s), 1198 (s), 1153 

(s), 1024 (w), 966 (s), 934 (w), 892 (w), 837 (w), 810 (w), 748 (w), 702 (s), 658 (s), 638 (s). 

Anal. Calcd. for C22H32BN3O4Mg: C, 60.38; H, 7.37; N, 9.60. Found: C, 59.95; H, 6.95; N, 

9.77. Mp 275-280 °C (dec). 

ToMZnOCHO (6). A 100 mL sealable reaction flask with a Teflon valve was charged with 

ToMZnH (0.450 g, 1.00 mmol) dissolved in benzene (15 mL). The solution was degassed, the 

flask was cooled to – 78 °C, and excess, dry CO2 was condensed into the flask. The reaction 

was allowed to warm to room temperature, and the resulting mixture was stirred for 30 min. 

The volatile materials were evaporated, and the white residue was washed with pentane (3 × 

5 mL) and subsequently dried under vacuum to provide analytically pure ToMZnOCHO as a 

white powder. X-ray quality single crystals were grown from a concentrated toluene solution 

of ToMZnOCHO at –35 °C (0.463 g, 0.940, 93.7%). 1H NMR (600 MHz, benzene-d6): δ 1.13 

(s, 18 H, CNCMe2CH2O), 3.46 (s, 6 H, CNCMe2CH2O), 7.37 (m, 3JHH = 7.2 Hz, 1 H, para-

C6H5), 7.55 (m, 3JHH = 7.2 Hz, 2 H, meta-C6H5), 8.31 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5), 

8.76 (s, 1 H, OCHO). 13C{1H} NMR (175 HMz, benzene-d6): δ 27.95 (CNCMe2CH2O), 

65.84 (CNCMe2CH2O), 81.36 (CNCMe2CH2O), 126.54 (para-C6H5), 127.37 (meta-C6H5), 

136.37 (ortho-C6H5), 140.90 (br, ipso-C6H5), 169.18 (ZnOCHO), 189.80 (br, 

CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ –18.1. 15N NMR (59.2 MHz, benzene-

d6): δ –160.3. IR (KBr, cm−1): 3072 (w), 2965 (s), 2923 (w), 1629 (s, νCO), 1595 (s, νCN), 

1461 (m), 1423 (m), 1389 (m), 1370 (m), 1351 (m), 1307 (s, νCO), 1273 (s), 1197 (s), 1163 

(m), 1124 (m), 1033 (w), 1019 (m), 996 (m), 957 (s), 946 (s), 893 (m), 871 (m), 844 (w), 819 
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(m). Anal. Calcd. For C22H30BZnN3O5: C, 53.63; H, 6.14; N, 8.53. Found C, 53.91; H, 6.19; 

N, 8.49. Mp 207-213 °C. 

ToMMgO2CSi(SiHMe2)3 (7). A 15 mL benzene solution of ToMMgSi(SiHMe2)3 (0.230 g, 

0.376 mmol) was degassed and stirred under CO2 (1 atm) for 24 h at ambient temperature. 

The volatile components were evaporated, and the white residue was washed with pentane (3 

× 5 mL). Vacuum drying provided analytically pure ToMMgO2CSi(SiHMe2)3 (0.226 g, 0.344 

mmol, 91.5%). 1H NMR (600 MHz, benzene-d6): δ 0.48 (d, 3JHH = 4.4 Hz, 18 H, SiHMe2), 

1.16 (s, 18 H, CNCMe2CH2O), 3.46 (s, 6 H, CNCMe2CH2O), 4.45 (sept, 3JHH = 4.4 Hz, 3 H, 

SiHMe2) 7.37 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 7.55 (t, 3JHH = 7.8 Hz, 2 H, meta-C6H5), 

8.36 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 HMz, benzene-d6): δ –3.65 

(SiHMe2), 28.20 (CNCMe2CH2O), 65.87 (CNCMe2CH2O), 80.63 (CNCMe2CH2O), 126.16 

(para-C6H5), 127.16 (meta-C6H5), 136.57 (ortho-C6H5), 191.65 (br, CNCMe2CH2O), 202.61 

(MgO2CSi). 11B NMR (128 MHz, benzene-d6): δ –18.1. 29Si NMR (120 MHz, benzene-d6): δ 

–35.51 (d, 1JSiH = 169.7 Hz, SiHMe2), –86.34 (Si(SiHMe2)3). 15N NMR (59.2 MHz, benzene-

d6): δ –157.4. IR (KBr, cm−1): 3076 (w), 3046 (w), 2965 (s), 2928 (w), 2897 (w), 2101 (s, 

νSiH), 1593 (s, νCN), 1463 (s), 1389 (w), 1366 (s), 1272 (s), 1248 (s), 1195 (s), 1161 (m), 963 

(s), 888 (s), 859 (s), 838 (s), 705 (m), 672 (m), 639 (w), 619 (w), 514 (m). Anal. Calcd. for 

C28H50BSi4N3O5Mg: C, 51.25; H, 7.68; N, 6.40. Found: C, 51.25; H, 7.39; N, 6.46. Mp: 190-

193 °C. 

HO2CSi(SiHMe2)3 (8). Tetrakis(dimethylsilyl)silane (2.00 g, 7.56 mmol) was dissolved in 

THF (20 mL). Methyllithium (7.08 mL, 11.3 mmol, 1.6 M in ether) was added. The reaction 

was stirred at room temperature for 3 days, and then the mixture was poured into a slurry of 
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dry ice in ether. After excess CO2 had evaporated, the reaction mixture was washed with 2% 

HCl (3 × 50 mL), and the ether layer was collected and dried over Na2SO4. The ether was 

evaporated to give a colorless oil (0.697 g, 2.78 mmol, 36.9%). 1H NMR (benzene-d6, 600 

MHz): δ 0.297 (br, 18 H, SiHMe2), 4.27 (sept, 3 H, 3JHH = 4.5 Hz, SiHMe2), 11.67 (br, 1 H, 

HO2CSi). 13C{1H} NMR (benzene-d6, 175 MHz): δ 195.22 (HO2CSi), 1.76 (SiHMe2). 29Si 

(benzene-d6, 120 MHz) δ −26.1 (d, 1JSiH = 180.6 Hz, SiHMe2), −85.2 (Si(SiHMe2)3). High 

Resolution MS Calcd. For C7H22O2Si4: (M+−1), 249.0619. Found: m/z, 249.0974 (M+−1). 

ToMZnO2CSi(SiHMe2)3 (9). ToMZnEt (0.035 g, 0.073 mmol) and HO2CSi(SiHMe2)3 (0.018 

g, 0.073 mmol) were dissolved in benzene and stirred for 30 min. Evaporation of the volatile 

components under reduced pressure provided a white solid, which was washed with pentane 

(3 × 5 mL) and dried under vacuum to obtain analytically pure ToMZnO2CSi(SiHMe2)3 

(0.047 g, 0.067 mmol, 92.3%). 1H NMR (400 MHz, benzene-d6): δ 0.51 (d, 3JHH = 4.3 Hz, 18 

H, SiHMe2), 1.18 (s, 18 H, CNCMe2CH2O), 3.48 (s, 6 H, CNCMe2CH2O), 4.46 (sept, 3JHH = 

4.3 Hz, 3 H, SiHMe2), 7.35 (t, 3JHH = 7.6 Hz, 1 H, para-C6H5), 7.53 (t, 3JHH = 7.4 Hz, 2 H, 

meta-C6H5), 8.31 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 MHz, benzene-

d6): δ –3.75 (SiHMe2), 28.00 (CNCMe2CH2O), 65.90 (CNCMe2CH2O), 81.30 

(CNCMe2CH2O), 126.41 (para-C6H5), 127.30 (meta-C6H5), 136.42 (ortho-C6H5), 141.72 (br, 

ipso-C6H5), 190.19 (br, CNCMe2CH2O), 193.38 (ZnO2CSi). 11B NMR (128 MHz, benzene-

d6): δ –18.3. 29Si NMR (120 MHz, benzene- d6): δ –36.36 (d, 1JSiH = 169.7 Hz, 

ZnOC(O)Si(SiHMe2)3), –87.38 (s, ZnOC(O)Si(SiHMe2)3). 15N NMR (61 MHz, benzene-d6): 

δ –158.0. IR (KBr, cm−1): 3077 (w), 3049 (w), 2963 (s), 2928 (w), 2898 (w), 2103 (s, νSiH), 

1598 (s, νCN), 1510 (m), 1464 (m), 1368 (m), 1352 (m), 1261 (s), 1196 (m), 961 (m), 907 (m), 
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838 (s), 813 (s), 777 (w), 704 (m), 687 (m), 639 (m), 624 (w). Anal. Calcd. for 

C28H50BSi4N3O5Zn: C, 48.23; H, 7.23; N, 6.03. Found: C, 47.81; H, 7.38; N, 5.69. Mp: 218-

220 °C. 

Procedures for DOSY (Diffusion-Ordered Spectroscopy) experiment. All the 

measurements were performed on a Bruker DRX400 spectrometer using a DOSY stimulated 

spin-echo pulse program with bipolar gradients.7 Accurately known concentrations of the 

species in question, ToMMgSi(SiHMe2)3 (2), ToMMgO2CSi(SiHMe2)3 (7), and 

ToMZnO2CSi(SiHMe2)3 (9) were determined by integration of resonances corresponding to 

species of interest and integration of a tetrakis(trimethylsilyl)silane standard of accurately 

known concentration. The temperature in the NMR probe was preset to 296 K, and the probe 

was maintained at a constant temperature for each experiment. The delay time in between 

pulses was set to 5 s in order to ensure the spins are fully relaxed to their ground states. 

During the experiments, a series of 1D 1H NMR spectra were acquired at increasing gradient 

strength. The signal intensity decay was fit by non-linear least squares regression analysis to 

Equation 1 to obtain the diffusion coefficient D (Figure S-1, S-2, and S-3),7 

 

where I is the observed intensity, D is the diffusion coefficient, γ is the gyromagnetic ratio of 

the nucleus, δ is the length of the gradient pulse, and Δ is the diffusion time. These 

experiments were performed on ToMMgSi(SiHMe2)3 (6.945 × 10−10 m2/s), 

ToMMgO2CSi(SiHMe2)3 (6.849 × 10−10 m2/s), ToMZnO2CSi(SiHMe2)3 (6.429 × 10−10 m2/s), 

and ToM
2Mg (6.00 × 10−10 m2/s). From this trend, we conclude that the silane carboxylate 

 S-8 

tetrakis(trimethylsilyl)silane standard of accurately known concentration. The temperature in the 

NMR probe was preset to 296 K, and the probe was maintained at a constant temperature for 

each experiment. The delay time in between pulses was set to 5 s in order to ensure the spins are 

fully relaxed to their ground states. During the experiments, a series of 1D 1H NMR spectra were 

acquired at increasing gradient strength. The signal intensity decay was fit by non-linear least 

squares regression analysis to Equation 1 to obtain the diffusion coefficient D (Figure S-1, S-2, 

and S-3),7  

ln I
I!

= !− γδ !G! Δ− δ3 D!!!!!!!!!!!!(1)! 

where I is the observed intensity, D is the diffusion coefficient, γ is the gyromagnetic ratio of the 

nucleus, δ is the length of the gradient pulse, and Δ is the diffusion time. These experiments 

were performed on ToMMgSi(SiHMe2)3 (6.945 × 10-10 m2/s), ToMMgO2CSi(SiHMe2)3 (6.849 × 

10-10 m2/s), ToMZnO2CSi(SiHMe2)3 (6.429 × 10-10 m2/s), and ToM
2Mg (6.00 × 10-10 m2/s). From 

this trend, we conclude that the silane carboxylate compounds are monomeric, as we would 

expect diffusion constants < 6 × 10-10 m2/s for dimeric compounds. 
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compounds are monomeric, as we would expect diffusion constants < 6 × 10−10 m2/s for 

dimeric compounds. 
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 S-9 

Figure S-1. Plot of intensity versus gradient strength that was used to determine the diffusion 

coefficient (6.945 × 10-10 m2/s) for ToMMgSi(SiHMe2)3 (2). 
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 S-10 

Figure S-2. Plot of intensity versus gradient strength that was used to determine the diffusion 

coefficient (6.849 × 10-10 m2/s) for ToMMgO2CSi(SiHMe2)3 (7). 
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Figure S-3. Plot of intensity versus gradient strength that was used to determine the diffusion 

coefficient (6.429 × 10-10 m2/s) for ToMZnO2CSi(SiHMe2)3 (9). 
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Chapter 7: Coordinatively Saturated Tris(oxazolinyl)borato Zinc Hydride-Catalyzed 

Carbonyl hydrosilylation and hydroboration. 

 

Contains results from a manuscript to be submitted for publication 

Debabrata Mukherjee, Arkady Ellern and Aaron D. Sadow 

 

Abstract. 

  The air-stable four-coordinate zinc compound ToMZnH (1, ToM = tris(4,4-dimethyl-2-

oxazolinyl)phenylborate) catalyzes hydrosilylation and hydroboration of aldehydes and 

ketones. The catalytic hydrosilylation of PhCHO with PhSiH3 and PhMeSiH2 selectively (~ 

95%) provide PhSiH(OCH2Ph)2 and PhMeHSi(OCH2Ph) respectively. However, reduction 

with a tertiary organosilane BnMe2SiH is possible under similar catalytic condition. Catalytic 

reduction with pinacolborane as the hydride source is found to be a more efficient protocol 

compared to hydrosilylation. A hydride insertion mechanism for the catalytic hydrosilylation 

of PhCHO with BnMe2SiH is proposed that also involves an inhibition effect from PhCHO. 

This substrate inhibition is explained based on the observed adduct formation between the 

zinc alkoxide (ToMZnOCH2Ph) and free PhCHO. 

Introuction. 

Alcohols are important building blocks for pharmaceuticals, agrochemicals, polymers, in 

natural product syntheses, auxiliaries, and ligand synthesis.1 Reduction of carbonyl 

functional groups is a convenient route to access to alcohols. Extensive use of stoichiometric 

reductions with metal hydrides such as NaBH4, LiAlH4 has been reported but with limitations 

like poor selectivity, inappropriate reaction conditions, moisture sensitivity of LiAlH4 and 
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difficulty in handling, and cost of large scale production. However, some decades ago, the 

application of transition metal catalysts for hydrosilylation and hydrogenation of carbonyl 

functionalities was developed as a useful and versatile alternative. Although in present 

situation, catalytic hydrogenation and transfer hydrogenation are the most developed routes 

to alcohols, catalytic hydrosilylation is still a desirable choice because of mild reaction 

conditions and simplicity. To date, numerous highly active catalysts comprising of a wide 

range of metals ranging from transition (Ti,2 Re,3 W,4 Mo,5 Cu,6 Fe,7 Ni,8 Ir,9 Rh,10 Ru11 etc.) 

to main group metals (Ca,12 Al,13 Zn14) for hydrosilylation of carbonyl compounds have been 

developed. Compared to the costly and toxic heavy metals such as rhodium, ruthenium, or 

iridium, less-expensive metals, such as titanium, zinc, copper, and iron, are finding more 

attentions in this regard. A hydride insertion mechanism, as shown in fig.1, is commonly 

proposed in several metal-based catalytic systems including Zn.2,6,8,14 However, isolation of 

specific catalytic intermediates to get an insight of the mechanism is only rarely attempted. 

 

Fig. 1 commonly proposed hydride insertion mechanism for catalytic hydrosilylation. 

            

        Additionally, a few transition metal catalyzed hydrosilylations have been suggested to 

not go through the insertion/σ-bond metathesis mechanism despite having positive evidences 
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for those individual steps.3,11,15 Our previous study on molecular ToMZnH catalyzed 

dehydrogenative coupling between alcohols (ROH) and silanes (HSiR’3) showed that the 

zinc alkoxides (ToMZnOR) are intemediates in the catalysis which transfer the –OR group to 

silicon at the turnover limiting metathesis step.16,17  Our further exploration of the chemistry 

of ToMZnH (1) showed that zinc alkoxides (ToMZnOR) are also accessible from 1 via 

carbonyl insertion into the Zn−H bond. This insertion step, in combination with the 

methathesis with Si-H moiety, provides an ideal opportunity to test the catalytic activity of 1 

in hydrosilylation of carbonyls. The inertness of 1 towards air18 would make this system even 

more attractive and the concept of isolating intermediates and probing the mechanism using 

detailed kinetics experiments would facilitate in gaining an in-depth insight of this important 

organic transformation.  

Results and Discussions. 

We started with testing the product selectivity of primary (PhSiH3) and secondary 

(PhMeSiH2) silanes using PhCHO as the aldehyde substrate in presence of 5 mol% of 1 in 

benzene-d6. Irrespective of the PhCHO : silane ratio, PhSiH3 and PhMeSiH2 selectively 

provided PhSiH(OCH2Ph)2 and PhMeSiH(OCH2Ph) respectively as shown in eqn.1 (~ 95% 

in both cases). The results are summarized in table 1. 
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Table 1. Micromolar-scale reactions of PhSiH3 and PhMeSiH2 with PhCHO using 5 mol% of 
1. 

Entry 
Silanes 

(equiv.) 
temperature time 

Products NMR 

yield% 

1 PhSiH3 (1) 60 °C 36 h 

 

>99% 

2 PhSiH3 (2) 60 °C 36 h 

 

>99% 

3 PhSiH3 (3) 60 °C 24 h 

 

>99% 

4 PhMeSiH2 (1) 80 °C 4 h 
 

>99% 

5 PhMeSiH2 (2) 80 °C 3 h 
 

>99% 

 

Ph
O

H

5 mol%
ToMZnH

benzene
Ph O SiHPhPhSiH3

2
+

Ph
O

H

5 mol%
ToMZnH

benzene
Ph O SiMePhPhMeSiH2+

95%

95%

O SiHPh
2

O SiHPh
2

O SiHPh
2

O SiHMePh

O SiHMePh
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As expected, PhSiH3 reacted at milder condition compared to PhMeSiH2 due to steric reason. 

This result indicates that tertiary silanes should be unreactive as the hydride source in this 

system. 

            However, BnMe2SiH, despite being a tertiary silane, proved to be an efficient hydride 

source and complete hydrosilylation was achieved under similar condition and catalyst 

loading providing BnMe2SiOCH2Ph. This is quite intriguing and we have also previously 

observed in our dehydrocoupling study that under similar condition and catalyst loading; 

BnMe2SiH reacted faster than PhMeSiH2 with smaller alcohols like MeOH, EOH and i-

PrOH. Nonetheless, we chose BnMe2SiH as the silane of interest to avoid multiple product 

formation and tested the scope of this system. The results are summarized in table 2. 

 

Table 2. Micromolar-scale hydrosilylation of carbonyls with BnMe2SiH using 5 mol% of 1. 

 

Entry Substrates Temperature Time 
Conversion 

(%) 

Isolated yield 

(%) 

1 

 

80 °C 4 h >99% 93% 

2 

 

80 °C 6 h >99% 95% 

O

O

R1

O
R2

5 mol%
ToMZnH

benzene
BnMe2SiH+ R1

O
R2

SiMe2Bn
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3 

 

80 °C 6 h >99% 92% 

4a 

 

80 °C 8 h >99% 96% 

5a 

 

80 °C 8 h >99% ---- 

6a 

 

80 °C 3 h >99% ---- 

7 

 

80 °C 6 h >99% 95% 

8 

 

80 °C 4 h >99% 93% 

9 

 

80 °C 6 h >99% 92% 

O

O

O

O

OO

O

O

F3C

O

O2N

O

N

O
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10 

 

80 °C 

80 °C 

6 h 

2 hb 

>99% 

>99% 
93% 

11 

 

80 °C 3 h >99% 95% 

12 

 

120 °C 12 h ---- ---- 

13 

 

80 °C 10 h >99% ---- 

14 

 

80 °C 6 h >99% 93% 

15 
 

80 °C 4 h >99% 97% 

16 

 

80 °C 16 h >99% 93% 

17 
 

80 °C 16 h >99% 96% 

NC

O

F3C

O

H

O

O

O
O

O

O
CH3

H3C
O

CH3
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18 

 

80 °C 6 h 20% ---- 

19 

 

80 °C 18 h >99% 93% 

20 
 

80 °C 6 h >99% ---- 

Percentage conversions were determined by measuring the concentration of the staring 
materials and products by comparison of corresponding integrated resonances to a known 
concentration of cyclooctane present in the reaction mixture. 
a 2 euqiv. of BnMe2SiH were used. b 3 equiv. of BnMe2SiH were used. 
 

Functional group tolerance of this system was examined on different para-substituted 

benzaldehyde substartes. Satisfactory hydrosilylations were achieved for –Me, –OMe, –OH, 

–NO2, –CN, –NMe2, –OH, –CF3, −F substituents. Two equivalents of BnMe2SiH were used 

for di-carboxaldehydes (entry 4-6). No further reduction of –CN moiety was observed even 

in presence of three equivalents of BnMe2SiH under the same catalytic condition (entry 10). 

(p-HCC)C6H4-CHO (entry 12) does not give any conversion, as the deactivation of catalyst 1 

is evident in 1H NMR due to protonation of the Zn−H by the acidic C−H alkynylic proton. 

Substrates like furfural (entry 14) and 2-pyridine carboxaldehyde (entry 20) also resulted into 

the corresponding hydrosilylation products in quantitative yield. Only 1,2-reduction was 

observed for α,β-unsaturated carbonyl moiety (entry 19). No enolization was observed for 

cyclohexylcarboxaldehyde, acetophenone, and acetone (entry 15-17). 

O
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            Hydroboration reduction instead of hydrosilylation using pinacol borane [HBpin] was 

also tested under similar catalytic conditions. Carbonyl substrates, previously used in the 

hydrosilylation study, were employed here as well and the results are listed in Table 3.  

 

        Table 3. Micromolar-scale hydroboration of carbonyls with HBpin using 5 mol% of 1. 

 

entry Substrates Temperature Time 
Conversion 

(%)a 

1 

 

25 °C 45 min >99% 

2 

 

25 °C 1 h >99% 

3 

 

25 °C 1.5 h >99% 

4 

 

25 °C 1.5 h >99% 

R1

O
R2

5 mol%
ToMZnH

benzene
HBpin+ R1

O
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O

O

O

O

O

O
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5 

 

25 °C 1.5 h >99% 

6 

 

25 °C 45 min >99% 

7 

 

25 °C 45 min >99% 

8 

 

25 °C 1.5 h >99% 

9 

 

25 °C 2 h >99% 

10 

 

25 °C 2 h >99% 

11 

 

25 °C 1 h >99% 

OO

O

O

O2N

O

O
O2N

O

NO2

N

O

NC

O
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12 

 

60 °C 1 h ---- 

15 

 

25 °C 4 h >99% 

16 

 

25 °C 1 h >99% 

17 
 

25 °C 1 h >99% 

18 

 

60 °C 3 h >99% 

19 

 

60 °C 6 h >99% 

20 

 

25 °C 2 h >99% 

22 

 

25 °C 1 h >99% 

H

O

O

O
O

O

O
CH3

O

O
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O
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23 

 

25 °C 3 h >99% 

25 
 

25 °C 2 h >99% 

a Percentage conversion was monitored using tetrakis(trimethylsilyl)silane as the internal 
standard. 
 

Functional group tolerance remained the same. Ferrocenecarboxaldehyde substrate (entry 23) 

was also reduced under this catalytic condition. Surprisingly no substantial difference in 

overall reaction time was observed between aldehyde substrates with electron donating and 

withdrawing substituents. And again, no enolization or aldol condensation side reactions 

were observed in any case. The reaction conditions and the overall reaction time for 

completion indicate that under similar conditions, relative rate of hydroboration (with HBpin) 

is faster than the hydrosilylation (with BnSiHMe2).  

 

Mechanistic investigations. 

Two tris(oxazolinyl)borato zinc species were detected in the hydrosilylation reaction mixture 

of PhCHO and BnMe2SiH. The 1H NMR chemical shifts of the ToM (-CH3) (1.12 ppm and 

1.20 ppm) at 97.5 °C in toluene-d8 solvent) indicate that the species are distinct from 

ToMZnH, and resonances for ToMZnH were not detected. Whereas, during the hydroboration 

catalysis of PhCHO or the other aldehyde substrates with HBpin, only the ToMZnH 

resonances were observed as the resting state of the catalyst. Therefore, we attempted to 

identify these intermediate species through stoichiometric experiments. Reaction of PhCHO 

Fe
O

N
O
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and ToMZnH in benzene at ambient temperature provides the zinc alkoxide ToMZnOCH2Ph 

(2) in quantitative yield over 3 h (eq. 3). 

 
1H and 13C{1H} NMR spectroscopy of 2 in benzene-d6 shows C3v symmetric ToM resonances 

at ambient temperature. Whereas, a variable temperature NMR study in toluene-d8 provided 

broad resonances for the ToM ligand and the CH2Ph moiety. However, a single crystal X-ray 

diffraction study of 2 reveals a dimeric structure in the solid state. The two – OCH2Ph 

moieties are bridging between two zinc centers, each of which are coordinated to a [ToM] 

ligand in κ2- fashion as depicted in the ORTEP figure. The interatomic Zn−O distance is 

1.97(4) Å, slightly longer than the distance in monomeric ToMZnOtBu (1.85 Å). 

 
Figure 1. ORTEP diagram of [(κ2-ToM)ZnOCH2Ph]2 (2) drawn with ellipsoids at 50% 
probability. Hydrogen atoms are omitted for clarity. 
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 1H NMR spectra of 2 in toluene-d8 acquired at 97.5 °C led to identify the major zinc species 

as the ToMZnOCH2Ph, present in the catalytic reaction mixture of PhCHO and BnMe2SiH 

(see above). The minor zinc species (3) observed in the catalytic hydrosilylation reaction 

mixture contains broad resonances for tris(oxazolinyl)borate (C3v) and a benzyloxy ligand. 

This minor species is also formed upon mixing 1 and PhCHO during the stoichiometric 

reaction and present throughout the reaction until all PhCHO is consumed. At the end 2 is the 

only species observed and isolated. However, excess PhCHO (10 equiv.) and ToMZnH give 

mixtures of 2 (major) and the second species (minor). Addition of PhCHO to isolated 2 also 

results in partial conversion to this species. Significant conversion of ToMZnOCH2Ph occurs 

only at high [PhCHO] (~ > 13 M).  

Similar treatment of C6F5CHO and ToMZnH at ambient temperature also provides the 

corresponding alkoxide ToMZnOCH2C6F5 (4) within 1 h, and subsequently isolated. Again, 

the 1H NMR spectrum, acquired during the reaction time course, showed the presence 4 and 

another zinc species associated with a local Cs-symmetric ToM ligand (5). Eventually, 4 is 

obtained as the sole zinc-containing species (eqn. 4). 
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Unlike the PhCHO, addition of only slightly more than 1 equiv. of C6F5CHO to 4 at ambient 

temperature provides 5 (eqn. 5) as the only zinc-containing species. 

 

Species 5 possesses a lower symmetric (lower than C3v) ToM ligand as indicated by the 1H 

NMR spectrum. A variable temperature NMR study of 5 in toluene-d8 was conducted, and a 

locally Cs-symmetric splitting pattern for the ToM ligand stands out at low temperature range 

(273 K). An EXSY NMR study with 5 in benzene at ambient temperature shows cross peaks 

between Ha, Hb, and Hc set of protons, that establishes a dynamic β-H exchange process 

operative between the coordinated and free aldehyde and the zinc alkoixide moiety. This 

process is the MPV reduction/oppenauer oxidation through β-H transfer from a metal-

alkoxide moiety to the electrophilic carbon of a coordinated aldehyde. Based on the 

similarity between C6F5CHO and PhCHO data, we assign the species 3 as the 

ToMZnOCH2Ph(OCHPh). Species 3 is also in dynamic equilibrium with free PhCHO and 2 

as shown below, confirmed by another EXSY experiment. 
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During catalytic hydrosilylation of PhCHO with BnMe2SiH an inhibition effect from the 

PhCHO substrate on the overall reaction rate was noticed. This observation, in combination 

with the previous zinc alkoxide-aldehyde adduct formation, leads us to postulate the 

operative catalytic cycle as below (Fig. 2). PhCHO insertion into ToMZn−H results into the 

Zinc alkoxide, ToMZnOCH2Ph 2, which gets involved in a reversible exchange process, in 

presence of free aldehyde, with the adduct species 3. Finally, the metathesis of Zn−OCH2Ph 

with Si−H gives the turnover to generate 1 and product BnMe2SiOCH2Ph. Adduct 3 is 

presumably less reactive towards the silane metathesis step that would explain the effect of 

PhCHO inhibition. 

Proposed cycle for ToMZnH-catalyzed Hydrosilylation of PhCHO with BnSiHMe2. 

 

This postulate is further supported by the fact that the hydrosilylation of C6F5CHO with 

BnMe2SiH under similar catalytic condition resulted into only 20% conversion after 6 h at 

80 °C. 1H NMR spectrum acquired during the catalysis showed that resting state of the 

catalyst is solely the adduct species 5. A detailed kinetics study for this whole reaction 

mechanism is underway. 
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Conclusion. 

Thus we have established an exciting air-stable Zn catalytic system for hydrosilylation 

reduction of carbonyls. The real advantage of this system lies on the possibility of 

intermediate isolation and studying the reaction mechanism in details. Individual 

stoichiometric steps are also being probed to finally compare the overall catalysis with the 

combination of individual steps involved. 
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Experimental data. 
	  
General Procedures. All reactions were performed under a dry argon atmosphere using 

standard Schlenk techniques or under nitrogen atmosphere in a glovebox, unless otherwise 

indicated. Water and oxygen were removed from benzene, toluene, pentane, diethyl ether, 

and tetrahydrofuran solvents using an IT PureSolv system. Benzene-d6 was heated to reflux 

over Na/K alloy and vacuum-transferred. ToMZnH was synthesized according to the 

literature procedure. The aldehydes and ketones were purchased from Sigma-Aldrich and 

distilled and stored over dry molecular seives inside the glove box. 1H, 13C{1H}, 11B, and 19F 

NMR spectra were collected on a Varian MR400 spectrometer. 15N chemical shifts were 

determined by 1H-15N HMBC experiments on a Bruker Avance II 700 spectrometer with a 

Bruker Z-gradient inverse TXI 1H/13C/15N 5mm cryoprobe; 15N chemical shifts were 

originally referenced to an external liquid NH3 standard and recalculated to the CH3NO2 

chemical shift scale by adding -381.9 ppm. Elemental analyses were performed using a 
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Perkin-Elmer 2400 Series II CHN/S by the Iowa State Chemical Instrumentation Facility. X-

ray diffraction data was collected on a Bruker APEX II diffractometer. 

 

ToMZnOCH2Ph (2). 60 microliters of benzaldehyde (0.589 mmol) was added to a 12 mL 

benzene solution of ToMZnH (0.260 g, 0.580 mmol) and stirred for 4 h at ambient 

temperature. Volatiles were then removed under reduced pressure providing a white solid. It 

was then washed with pentane (3 × 5 mL) and further dried under vacuum to obtain 0.305 g 

(0.550 mmol, 93.4%) of ToMZnOCH2Ph as a white powder. X-ray quality single crystals 

were grown from a concentrated toluene solution at – 35 °C. Analytically pure 

ToMZnOCH2Ph was also obtained upon recrystallization from a concentrated toluene 

solution at – 30 °C. 

1H NMR (400 MHz, benzene-d6): δ 1.07 (s, 18 H, CNCMe2CH2O), 3.46 (s, 6 H, 

CNCMe2CH2O), 5.57 (s, 2 H, ZnOCH2C6H5), 7.15 (t, 3JHH = 7.6 Hz, 1 H, para-

ZnOCH2C6H5), 7.24 (t, 3JHH = 7.6 Hz, 2 H, meta-ZnOCH2C6H5), 7.35 (t, 3JHH = 7.2 Hz, 1 H, 

para-C6H5), 7.44 (t, 3JHH = 7.2 Hz, 2 H, meta-C6H5), 7.77 (d, 3JHH = 7.6 Hz, 2 H, ortho-

ZnOCH2C6H5), 8.15 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 MHz, benzene-

d6): δ 27.47 (CNCMe2CH2O), 64.84 (CNCMe2CH2O), 70.52 (ZnOCH2C6H5), 80.34 

(CNCMe2CH2O), 125.39 (para-ZnOCH2C6H5), 125.95 (meta-ZnOCH2C6H5), 126.48 (para-

C6H5), 127.02 (meta-C6H5), 133.87 (ortho-ZnOCH2C6H5), 135.61 (ortho-C6H5), 141.70 (br, 

ipso-C6H5), 149.60 (ipso-ZnOCH2C6H5), 189.84 (br, CNCMe2CH2O). 11B NMR (128 MHz, 

benzene-d6): δ –18.2. 15N NMR (59.2 MHz, benzene-d6): δ –159.2. IR (KBr, cm-1): 2967 (s), 

2930 (m), 2873 (m), 1576 (s, νCN), 1491 (w), 1463 (m), 1432 (w), 1384 (w), 1369 (m), 1281 

(s), 1255 (m), 1195 (s), 1037 (m), 1023 (m), 1004 (s), 969 (s), 899 (w), 845 (w), 751 (m), 
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704 (s). Anal. Calcd. for C28H36BN3O4Zn: C, 60.62; H, 6.54; N, 7.57. Found: C, 60.20; H, 

6.49; N, 7.52. Mp: 215-220 °C (dec). 

 

ToMZnOCH2C6F5 (4). ToMZnOCH2C6F5 was also synthesized following the similar 

procedure as described for 2. Starting from 0.180 g (0.401 mmol) of ToMZnH and 50 

microliters (0.405 mmol) of C6F5CHO, 0.234 g (0.363 mmol, 90.5%) of ToMZnOCH2C6F5 

was isolated. Analytically pure sample of 3 was obtained from recrystallizing a concentration 

toluene solution at – 30 °C.  

1H NMR (400 MHz, benzene-d6): δ 1.07 (s, 18 H, CNCMe2CH2O), 3.45 (s, 6 H, 

CNCMe2CH2O), 5.40 (s, 2 H, ZnOCH2C6H5), 7.36 (t, 3JHH = 7.6 Hz, 1 H, para-C6H5), 7.53 (t, 

3JHH = 7.6 Hz, 2 H, meta-C6H5), 8.26 (d, 3JHH = 7.6 Hz, 2 H, ortho-C6H5). 13C{1H} NMR 

(175 MHz, benzene-d6): δ 28.18 (CNCMe2CH2O), 59.35 (ZnOCH2C6F5), 65.47 

(CNCMe2CH2O), 81.06 (CNCMe2CH2O), 126.56 (para-C6H5), 127.38 (meta-C6H5), 136.29 

(ortho-C6H5), 137.37 (ZnOCH2C6F5), 138.78 (ZnOCH2C6F5), 139.21 (ZnOCH2C6F5), 139.69 

(ZnOCH2C6F5), 141.17 (br, ipso-C6H5), 145.43 (ZnOCH2C6F5), 146.81 (ZnOCH2C6F5), 

190.63 (br, CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ –18.0. 15N NMR (59.2 

MHz, benzene-d6): δ –159.7. 19F NMR (benzene-d6, 376 MHz): δ –146.76 (ortho-

ZnOCH2C6F5), –159.64 (para-ZnOCH2C6F5), –164.26 (meta-ZnOCH2C6F5). IR (KBr, cm-1): 

3048 (w), 2969 (s), 2932 (w), 2901 (w), 2826 (w), 1652 (w, νCN), 1593 (s, νCN), 1499 (s, νCF), 

1463 (s), 1388 (w), 1368 (m), 1276 (s), 1197 (s), 1166 (m), 1114 (m), 1086 (m), 1055 (m), 

957 (s), 936 (s), 820 (w), 745 (w), 704 (s), 679 (w), 640 (w). Anal. Calcd. for 

C28H31BN3O4F5Zn: C, 52.16; H, 4.85; N, 6.52. Found: C, 52.24; H, 4.86; N, 6.34. Mp: 238-

242 °C (dec). 
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ToMZnOCH(C6F5)OCH2C6F5 (5). A 5 mL toluene mixture containing 0.360 g (0.802 

mmol) of ToMZnH and 0.2 mL (1.620 mmol) of C6F5CHO was kept at −30 °C for two weeks. 

X-ray quality single crystals of ToMZnOCH(C6F5)OCH2C6F5 were deposited in the mean 

time which were then isolated by decanting the supernatant solution. Further drying the 

crystals under vacuum provided 0.205 g (0.244 mmol) of analytically pure 

ToMZnOCH(C6F5)OCH2C6F5. 1H NMR (600 MHz, toluene-d8): δ 1.00 (s, 9 H, 

CNCMe2CH2O), 1.06 (s, 9 H, CNCMe2CH2O), 3.44 (s, 6 H, CNCMe2CH2O), 4.26 (d, 1JHH = 

10.8 Hz, 1 H, ZnOCH2C6F5(C6F5CHO)), 4.51 (d, 1JHH = 10.8 Hz, 1 H, ZnOCH2C6F5(C6F-

5CHO)), 6.76 (s, 1 H, ZnOCH2C6F5(C6F5CHO)), 7.29 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 

7.44 (t, 3JHH = 7.2 Hz, 2 H, meta-C6H5), 8.11 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} 

NMR (175 MHz, benzene-d6): δ 27.36 (CNCMe2CH2O), 27.77 (CNCMe2CH2O), 54.14 

(ZnOCH2C6F5(C6F5CHO)), 65.58 (CNCMe2CH2O), 81.13 (CNCMe2CH2O), 98.62 

((ZnOCH2C6F5(C6F5CHO), 112.75 (C6F5), 120.24 (C6F5), 126.55 (para-C6H5), 127.36 (meta-

C6H5), 136.27 (ortho-C6H5), 137.28 (C6F5), 138.70 (C6F5), 140.20 (C6F5), 140.45 (br, ipso-

C6H5), 140.87 (C6F5), 141.60 (C6F5), 142.28 (C6F5), 145.48 (C6F5), 146.90 (C6F5), 190.84 (br, 

CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ −18.3. 15N{1H} NMR: δ −160.6. 19F 

NMR (benzene-d6, 376 MHz): δ – 143.24 (C6F5), –145.18 (C6F5), −155.20 (C6F5), –157.25 

(C6F5), -163.13 (C6F5), –163.49 (C6F5). IR (KBr, cm-1): 3080 (w), 3049 (w), 2973 (m), 2933 

(m), 2905 (m), 1657 (w), 1650 (w), 1595 (s, νCN), 1522 (s), 1504 (s), 1464 (m), 1432 (w), 

1390 (m), 1371 (m), 1356 (m), 1339 (w), 1298 (m), 1278 (m), 1253 (w), 1198 (s), 1168 (m), 

1133 (m), 1110 (m), 1055 (m), 1038 (m), 1000 (s), 955 (s), 937 (s), 922 (m), 820 (m), 803 

(m), 746 (m), 706 (m). Anal. Calcd. for C35H32BN3O5F10Zn: C, 50.00; H, 3.84; N, 5.00. 

Found: C, 50.40; H, 3.99; N, 4.94. Mp: 165-170 °C (dec.) 
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General procedure for gram-scale hydrosilylation reduction of carbonyls. Procedure for 

the hydrosilylation reduction of PhCHO using BnMe2SiH is provided here as an example. 

Reductions of all the other substrates were achieved following similar procedure. A 5 mL 

toluene solution containing 0.5 mL (4.9 mmol) of PhCHO, 0.8 mL (5.1mmol) of BnMe2SiH, 

and 0.022 g (0.05 mmol) of ToMZnH was heated to reflux in a teflon sealed tube for 8 h. 

Upon cooling, the reaction mixture was added to 50 mL of 1 M aqueous NaOH solution and 

stirred for 2 h at ambient temperature.  Subsequently, the product PhCH2OH was extracted 

from the aqueous solution using diethyl ether (3×50 mL). Removal of diethyl ether using 

rotor vapor afforded 0.490 g (4.5 mmol, 91.8%) of PhCHO2OH. 

 

Procedures for DOSY (Diffusion-Ordered Spectroscopy) experiment. All the 

measurements were performed on a Bruker DRX400 spectrometer using a DOSY stimulated 

spin-echo pulse program with bipolar gradients. Accurately known concentrations of the 

species in question, ToMZnOCH2Ph and ToMZnOCH2C6F5(C6F5CHO) were determined by 

integration of the resonances corresponding to species of interest and integration of a 

tetrakis(trimethylsilane standard of accurately known concentration. The temperature in the 

NMR probe was preset to 298K, and the probe was maintained at a constant temperature for 

each experiment. The delay time in between pulses was set to 5 s in order to ensure the spins 

are fully relaxed to their ground states. During this experiments, a series of 1D 1H NMR 

spectra were acquired at increasing gradient strength. The signal intensity decay was fit by 

non-linear least squares regression analysis to Equation 1 to obtain the diffusion coefficient 

D. 
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Plot of intensity vs. gradient strength that was used to determine the diffusion coefficient 

(7.78×10−10 m2/s) for ToMZnO(3,5-Me2-C6H3). 
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Plot of intensity vs. gradient strength that was used to determine the diffusion coefficient 

(7.93×10−10 m2/s) for ToMZnOCH2Ph (2). 
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Plot of intensity vs. gradient strength that was used to determine the diffusion coefficient 

(7.16×10−10 m2/s) for ToMZnOCH2C6F5(OCHC6F5) (5). 
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Chapter 8: ToMMgMe is a multifunctional pre-catalyst for reductive hydroboration of 

carbonyls and esters as well for Tishchenko reaction and reversible trans esterification. 

 

Contains results from a manuscript to be submitted for publication 

Debabrata Mukherjee, Arkady Ellern and Aaron D. Sadow 

 

Abstract. 

Tris(oxazolinyl)phenyl borato magnesium methyl is an active pre-catalyst for hydroboration 

of aldehydes, ketones, esters, and polyesters using HBpin as the hydride source. The same 

magnesium methyl complex also actively catalyzes the Tishchenko coupling of aldehydes to 

esters.  

Introduction. 

Although Grignard reagents are widely known for stoichiometric C-C bond formation 

reactions,1 exploration of the potential catalytic activity of organometallic magnesium 

complexes in the context of carbonyl and ester reduction has begun only recently.2,-6 

Inexpensive, non-toxic, and oxophilic nature of magnesium has made this metal system 

highly attractive. Recently we have reported that the ToMMgMe [ToM = tris(4,4-dimethyl-2-

oxazolinyl)phenylborate] (1) is an active pre-catalyst for intramolecular 

hydroamination/cyclization of amino-olefins and dehydrocoupling Si−N bond formation 

reactions between amines and hydrosilanes.7,8 We continued to discover other potential use 

of 1 and here we report it’s catalytic activity in hydroboration reduction of aldehydes, 

ketones, esters, imines, and amides as well as Tishchenko dimerization of aldehydes to esters. 

Hill and coworkers have recently reported a magnesium alkyl complex, 
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[CH{C(Me)NAr}2MgnBu [Ar = 2,6-iPr2C6H3], as an active pre-catalyst for the hydroboration 

of carbonyl and pyridine derivatives.9,10 For ester to alcohol transformation, systems for 

catalytic hydrosilylation11-15 and hydrogenation16 have been developed in order to avoid 

stoichiometric metal hydride reductions. Whereas examples of hydroboration reduction of 

esters are rare.10  

Results and Discussions. 

Inspired by Hill’s report, we tested a wide range of aromatic and aliphatic aldehydes, ketones, 

esters, lactones, imines and amides for the hydroboration reactivity with HBpin using 1 as the 

pre-catalyst. Catalyst loading as low as 0.05 mol% readily afforded the borate ester products 

in quantitative yield at ambient temperature. The reactions were monitored by following 1H 

and 11B NMR spectroscopy.  

 

 

entry Substrates Temperaturea Timea 
NMR yield 

(%) 
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yield (%)b,c 
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2 

 

25 °C 45 min >99% 93% 

3 

 

25 °C 15min >99% 97% 

4 

 

60 °C 1 h >99% 90% 

5 

 

25 °C 30 min >99% 92% 

6 

 

25 °C 1 h >99% 92% 

7 

 

25 °C 15 min >99% 95% 

8 

 

25 °C 30 min >99% 96% 

9 
 

25 °C 15 min >99% 92% 

10  25 °C 15 min >99% 96% 

O

O

O
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O

O2N

O
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O

NC

O

O

O

O
O
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11 
 

25 °C 15 min >99% 92% 

12 

 

60 °C 2 h >99% 95% 

13 

 

60 °C 5 h >99% 90% 

14 

 

60 °C 1 h >99% 91% 

15 

 

25 °C 30 min >99% 93% 

16 

 

60 °C 2 h >99% 92% 

17 
 

25 °C 15 min >99% 92% 

18 

 

25 °C 15 min >99% 90% 

19 

 

25 °C 15 min 
>99% 

 
91% 
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21 
 

25 °C 15 min >99% 90% 

22 
 

25 °C 15 min >99% --- 

23 
 

25 °C 15 min 

 

>99% 

 

--- 

24 
 

25 °C 15 min >99% 90% 

25 
 

25 °C 15 min >99% --- 

26 
 

25 °C 15 min >99% --- 

27 

 

25 °C 15 min >99% 88% 

28 
 

25 °C 15 min >99% --- 

29 

 

25 °C 15 min >99% --- 

30 
 

25 °C 15 min >99% --- 
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31 
 

25 °C 15 min >99% --- 

32 

 

25 °C 15 min >99% 92% 

33 

 

25 °C 6 h >99% 93% 

34 

 

25 °C 15 min >99% --- 

a temperature and time are given for micromolar NMR-scale reactions. b Gram-scale 
reactions are conducted using 0.5 mol% catalyst loading. c products from some of the 
substrates were not isolated in gram-scale and hence the isolated yield is not reported.  
 

Para-substitued aromatic aldehdydes with both electron-donating and -withdrawing groups 

undergo quantitative conversion within similar time scale under similar conditions (entry 1-

7). Thus the facility of the catalysis is apparently controlled by steric properties of the 

substrates. For similar reason, the hydroboration of more sterically hindered ketonic 

substrates generally required higher catalyst loading or longer reaction time or elevated 

temperature (entry 12-14). p-cyano benzaldehyde (entry 7) is noteworthy since only the 

aldehyde moiety is reduced and the cyano-group remains untouched; even with 3 equiv. of 

HBpin and further heating at 60 °C. Similarly for pyridine-2-carboxaldehyde (entry 17) no 

dearomatization of the pyridine ring is observed. With α,β-unsaturated aldehyde (entry 15) 

only the 1,2-reduction is evident and the olefinic double bond remains intact even in presence 

of excess HBpin. Substrates like furfural and ferrocene-2-carboxaldehyde are also 

O OC6H13

O

O

N

H N

O
Me
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successfully reduced quantitatively. Similar to Hill’s β-diketiminato Mg system, no 

enolization or aldol condensation side reactions were observed in any case. Imines also 

undergo hydroboration under similar catalytic conditions. But the relative hydroboration rate 

is substantially slower than the aldehydes and ketones. Thus, the reduction of N-benzelidine 

aniline (entry 33) occurs at ambient temperature over a period of 6 h in presence of 5 mol % 

of 1. Gram-scale hydroboration of the substrates (table 1) were successfully conducted using 

0.5 mol% of 1, thus establishing the practicability of this system. Hydrosilylation using 

PhSiH3 instead hydroboration gives poor results in carbonyl reduction in this catalytic system. 

As for examples, hydrosilylation of PhC(O)CH3 with PhSiH3 using 1 as the pre-catalyst 

proceeds slowly only at elevated temperature (120 °C) and gives only partial conversion 

(40%, 20 h). Reduction of esters with two equivalents of HBpin is also successfully carried 

out using 0.5 mol% of catalyst loading and similar functional group tolerance is envisaged. 

Interestingly, monomeric rac-lactide and polymerized lactide (entry 10, 11) are also 

successfully hydroborated [rac-lactide polymerization was accomplished using ToMAlMe2 

catalyst.17 Buchwald’s Ti-system for catalytic hydrosilylation of lactones performs partial 

reduction providing lactols with high selectivity over diols following work up.18 However, 

under our current catalytic condition diols are the only observed products.  

Ancillary ToM ligand provides unique support to isolate reactive intermediates, which in turn 

facilitates mechanism elucidation. We therefore set out to study the mechanism involved in 

the reductions using stoichiometric reactions and 1H NMR kinetics, especially of esters since 

this is less explored compared to aldehydes and ketones. A possible catalytic cycle involving 

a crucial β-dealkoxylation step from a Ti-alkoxide intermediate has been proposed by 

Buchwald et. al.18 But a detailed mechanistic study on metal mediated catalytic 
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hydrosilylation or hydroboration reduction of esters to alcohols and convincing evidence in 

favor of the β-dealkoxylation step is missing in the literature. Similar to Buchwald’s Ti-

system of no rearrangement product is found in the reduction of a vinylcyclopropyl ester and 

thus a radical pathway for the ester reduction mechanism is unlikely here.  

ToMMgMe (1) readily reacts with HBpin in benzene-d6 to generate methyl boronic acid 

pinacol ester (confirmed by a singlet resonance at 35 ppm in 11B NMR spectrum) along with 

ToMMgH (2), which subsequently undergoes rapid decomposition.  

 

However, in presence of excess HBpin (15 equivalents), 2 is trapped as a borohydride species, 

ToMMgH2B(pin) (3) (eqn. 1). Thus, the compound 3 is synthesized and isolated following a 

slow addition of a benzene solution of 1 to HBpin (15 equivalents) at ambient temperature. 
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Species 3 is pseudo-C3v-symmetric in solution, as indicated by the equivalent oxazoline 

groups in 1H and 13C spectra. The 1H NMR spectrum also contains a broad quartet at 4.19 

ppm equivalent to 2 protons assigned to ToMMgH2Bpin and the 12 equivalent methyl protons 

of the pinacol unit appear as a broad singlet at 1.42 ppm. Although, the broad signal suggests 

fluxionality of the pinacol unit in solution at ambient temperature, the signal only sharpened 

below 0 °C. In the 11B NMR spectrum, a characteristic triplet resonance at 3.44 ppm (1JBH = 

93.5 Hz), assigned to the MgH2Bpin boron, was observed along with the usual ToM borate 

resonance (−18.4 ppm). The solid-state IR spectrum of 3 showed a broad peak at 2309 cm−1 

corresponding to νBH band. A single crystal X-ray diffraction study of 3 (fig. 1) revealed that 

the pinacol unit is coordinated to the Mg center through one of the two oxygen atoms. The 

only similar but not so well-defined structurally characterized example is the dimeric 

[(HC{(Me)CN(2,6-iPr2C6H3)}2Mg)2-µ-H-µ-{H2Bpin}] complex, reported by Hill and 

cowokers,10 in which the Mg-centers are bridged by µ-Mg−H−Mg and O−B−O interactions.  

 

Fig. 1 ORTEP diagram of ToMMgH2Bpin (3) with ellipsoids plotted at 50% probability. 
Hydrogen atoms other than the −BH2 moiety are not illustrated for clarity. 
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Apparently none of the two H2B hydrides are pointing towards the Mg-center. However, one 

of the two Mg−H distances (2.300 Å and 2.913 Å) is shorter than the sum of the van der 

Waal radii of Mg and O (2.82 Å); and thus a secondary interaction between them cannot be 

over ruled. Species 3 is isolable and persistent at ambient temperature, as the concentration of 

3 in a benzene-d6 solution stored in Teflon-sealed NMR tube is maintained over 2 days. 

However, rapid decomposition to unidentified mixture of products occurs upon heating at 

60 °C.  

ToMMgMe (1) and benzophenone readily provide ToMMgOCMePh2 (4) in benzene at 

ambient temperature. Species 4 was isolated and fully characterized using spectroscopic, 

analytical, and X-ray diffraction techniques.   

           

Similar to 1, species 4 also possesses pseudo-C3v symmetric ToM-coordination to the Mg 

center in solution and the –CH3 singlet is now moved to 2.13 ppm from −0.65 ppm in 1 upon 

insertion. Monomeric nature of 4 is also maintained in solid state as confirmed by an X-ray 

crystal structure. The Mg−O interatomic distance, 1.829(4) Å, is shorter than the Mg−O 

distance in 3. A subsequent reaction between 4 and HBpin produces Ph2MeCO−Bpin and 2, 

which further undergoes rapid decomposition as mentioned above. Whereas adding excess 

HBpin (~15 equiv.) to a benezene-d6 solution of 4 provides Ph2MeCO−Bpin and 3. 
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 The ester reduction mechanism is further investigated using 1H NMR kinetics. Ethyl acetate 

(EtOAc) and HBpin were chosen as the substrates for this study. Under initial conditions of 

0.30 M [EtOAc]ini, 0.85 M [HBpin]ini with 6.6 mM - 25.2 mM [ToMMgMe] (1) pre-catalyst 

in toluene-d8 at 287 K (calibrated) plots of [EtOAc] versus time follow a half-order decay 

over three half-lives (nonlinear least squares analysis of the integrated half-order rate law 

provides kobs for a particular catalyst concentration. Several reactions were attempted with a 

range of concentrations of HBpin with constant [EtOAc]ini and [ToMMgMe]; kobs does not 

change with [HBpin] ranging from 0.85 M – 2.4 M. This lack of dependence on HBpin 

concentration confirms its zero-order contribution to the rate law with EtOAc as the limiting 

reagent. In contrast, a plot of kobs vs. [ToMMgMe] shows a linear correlation giving kobs’ = 

1.79 × 10−2 mol−1/2 sec−1. Under these conditions the empirical rate law is: 

− d[EtOAc]/dt = kobs’ [ToMMgMe] [EtOAc]1/2 [HBpin]0 

The half-order dependence on [EtOAc] indicates that the C-O bond breakage (β-

dealkoxylation) is relatively fast and the turnover-limiting step lies somewhere following it. 

Assuming that the insertion of the resulting CH3CHO into the Mg-H moiety is really fast, the 

metathesis step between the ToMMgOEt (5) and HBpin could be the slowest and hence 

turnover-limiting step. However, the fact that the empirical rate law is independent of 
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[HBpin] suggests a rapid adduct formation between ToMMgOEt and HBpin, followed by a 

slow internal hydride transfer could be a possibility. In order to verify this and identify the 

true nature of the resting state of the Mg-species, the catalysis in toluene-d8 was monitored at 

a lower temperature (267K) and with a relatively higher catalyst loading ([ToMMgMe] = 54 

mM, [EtOAc]ini = 0.58 M, [HBpin]ini = 1.18 M). Lowering the temperature would essentially 

slow down the reaction and a higher [Mg] would help to identify the resting state. Under 

these conditions a new Mg-species was truly identified and spectroscopically characterized 

as ToMMgOEtHBpin (6) adduct which is distinct from ToMMgMe, ToMMgH2Bpin and 

ToMMgOEt. The 1H NMR of the reaction mixture contains two diastereotopic sets of six 

methyl protons (1.33 ppm and 1.36 ppm), identified as the HBpin coordinated to ToMMgOEt, 

which is different from free HBpin (0.99 ppm) or ToMMgH2Bpin (1.42 ppm). Similarly the 

triplet resonance  (1.46 ppm) corresponding to the new MgOEt moiety is different from that 

of ToMMgOEt (1.27 ppm) and free EtOAc. The 11B NMR of this reaction mixture contains a 

broad resonance at 7.2 ppm assigned as the ToMMgOEtHBpin, which is again markedly 

different from that of ToMMgH2Bpin (3.4 ppm). Attempts to isolate this species or X-ray 

quality single crystals from the catalytic reaction mixtures at low temperatures failed. Thus 

we propose a catalytic cycle as shown in fig. 2 operative for the hydroboration reduction of 

ethyl acetate, where the resting state of the catalyst is an adduct ToMMgOEtHBpin and the 

turnover-limiting step being the intramolecular metathesis. 
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Fig. 2 proposed cycle for the hydroboration of EtOAc using HBpin and 1 as the pre-catalyst.       
 

The proposed β-dealkoxylation step is further probed using stoichiometric reaction. Reaction 

between 1 and EtOAc in benzene-d6 at ambient temperature readily provides a mixture 

ToMMgOEt (5) and acetone. Formation of acetone was confirmed by comparing with a 

standard sample in benzene-d6, whereas compound 5 was precipitated out from the above 

solution mixture as X-ray quality single crystals. Although we were not able to identify the 

intermediate Mg alkoxide (7), formation of 5 and acetone strongly suggests a true β-

dealkoxylation pathway. Compound 5 is a dimer in the form of [(κ2-ToM)Mg(µ-OEt)]2, 

confirmed by its solid-state X-ray crystal structure. The Mg−O interatomic distance is 1.95 Å, 

similar to the Mg−O distance in 3 but longer than that in 4, due to dimeric nature. Compound 

5 is independently synthesized from 1 and EtOH and subsequently completely characterized. 
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Lactones are also used to identify the β-dealkoxylation step. Thus the stoichiometric 

reactions of 1 with phthalide and dihydrocoumarin provide the corresponding alkoxides 7 

and 8 respectively, resulting from the Mg−Me insertion into C=O followed by rapid β-

dealkoxylation. 

 
13C NMR spectrum of 7 indicates that the ketone functional group is coordinated to the Mg-

center as the chemical shift of the carbonyl carbon (123 ppm) is observed to be upfielded. 

Species 7 slowly precipitates out form solution as it forms; but it’s NMR (1H, 13C, 11B, 

15N) spectroscopic characterization is successfully conducted. In species 8, however, the 

ketone moiety is non-coordinating as evident from the 13C chemical shift (214 ppm).  

Interestingly, when the reaction time course of hydroboration of PhCHO was monitored, it 

turns out that the change in the order of substrate addition to the catalyst gives rise to 

different scenarios. Thus adding a benzene-d6 solution mixture of PhCHO and HBpin (1:1) to 

another benzene-d6 solution of ToMMgMe (1) provides PhCH2O-Bpin as the only product. 

Whereas, consecutive addition of PhCHO and HBpin to a benzene-d6 solution of 1 initially 

gives a mixture of PhCH2O-Bpin and benzyl benzoate [PhCO2CH2Ph] ester. The ester is 

eventually reduced as well to provide PhCH2O-Bpin as the sole final product. Such 
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observation indicates that 1 could also be an active pre-catalyst for Tishchenko coupling of 

aldehydes.  

Dimerization of aldehydes to analogous carboxylic esters, known as Tishchenko reaction, is a 

century old atom-economical process for the direct synthesis of organic esters. This reaction 

is quite appealing as the resulting esters have wide applications in medicine, food and 

perfume industries.19 Aluminium alkoxides20 were initially the catalyst of choice for long 

time until recently a series of catalyst systems ranging from transition metals,21 lanthanides,22 

actinides23 to alkali (Na24, K25) and alkaline earth metals (Mg26, Ca27, Ba28, Sr29) in the past 

two decades are explored for the above transformation. Among the group 2 alkaline earth 

metals, use of isolable molecular magnesium catalysts for Tishchenko coupling is an 

attractive option due to the low cost, less toxicity and easy availability. Furthermore, with a 

suitable choice of supporting ancillary ligand reactive intermediates could be isolated which 

are important to probe the reaction mechanism. Thus, the catalytic activity of 1 was tested 

with a wide range of aromatic and aliphatic aldehydes with different functional groups.  

 

Entry Substrates Temperature Time 
Conversion 

(%)a 

Isolated 

yield (%) 

1 

 

25 °C 2 h 94% 88% 

2 

 

25 °C 

60 °C 

12 h 

16 h 

70% 

94% 
86% 

O

O
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3 

 

25 °C 

60 °C 

12 h 

12 h 

65% 

93% 
84% 

4 

 

60 °C 2 h ~ 2% --- 

5 

 

120 °C 9 h 70% --- 

6 

 

25 °C 

60 °C 

15min 

30 h 

12% 

85% 
67% 

7 

 

25 °C 

60 °C 

15min 

5 h 

20% 

98% 
90% 

8 

 

25 °C 

60 °C 

15min 

21 h 

17% 

93% 
88% 

9 

 

80 °C 12 h ~ 4% --- 

10 

 

25 °C 

60 °C 

15 min 

12 h 

58% 

98% 
90% 
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11 

 

120 °C 2 h --- --- 

12 
 

120 °C 28 h 9% --- 

13 

 

25 °C 

60 °C 

2 h 

45 h 

25% 

97% 
90% 

14 

 

120 °C 2 h --- --- 

15 

 

60 °C 12 h ---- --- 

16 
 

25 °C 15 min >99% 94% 

17 
 

25 °C 15 min >99% 93% 

18 
 

80 °C 12 h 98% 88% 

19b 

 

25 °C 15 min >99% 95% 

a Percentage conversion is monitored in micromolar NMR-scale reactions. b 
Phthaldialdehyde gives cyclic phthalide ester. 
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Surprisingly, p-acetyl benzaldehyde (entry 14) remains unreacted under the above catalytic 

condition even at elevated temperature (120 °C). Similarly when a 1:1 mixture of 

benzaldehyde and acetophenone (entry 15) is treated under the similar catalytic condition 

only starting materials are recovered even after heating at 60 °C for 12 h and PhCO2CH2Ph 

or a crossed-Tischenko product are not detected in 1H NMR. As evident from the table above, 

a lot of aldehyde substrates undergo relatively rapid conversion into substantial amount of 

products at the initial stage of the reaction at ambient temperature. However they eventually 

slow down and further conversion requires elevated temperature and prolonged reaction time. 

Given the fact that there is no sign of catalyst decomposition as evident form the 1H NMR of 

the reaction mixture (intensity of ToM-CH3 and ToM-CH2 resonance remains unaffected), we 

speculated that either 1 catalyzed Tishchenko coupling of aldehydes is reversible or there is 

substrate or product inhibition. Coles et. al. also reported similar kind of scenario in their 

guanidinato-Mg system, but from their report the reason behind the catalysis inhibition was 

not clear.26a We further observed that keeping [substrate] the same, increasing the catalyst 

loading increases the amount of product formation at ambient temperature. This is against the 

suspected reversibility since the aldehyde ↔ ester equilibrium should not be affected by the 

[catalyst]. Furthermore, when a catalytic reaction was performed with a substrate mixture of 

PhCHO and CyCHO in 1:1 ratio using 10 mol% of 1 as the pre-catalyst, a mixture of four 

esters, namely PhCO2CH2Ph (E1, 23.1%), CyCO2CH2Cy (E2, 37.6%), PhCO2CH2Cy (E3, 

20.4%), and CyCO2CH2Ph (E4, 18.9%) was initially observed after 15 min at ambient 

temperature. Subsequent heating of the solution mixture at 80 °C for 2 h redistributed the 
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relative amount of the products as E1 (19.4 %), E2 (28.8 %), E3 (25.9 %), E4 (25.9 %). 

Further heating for another 6 h did not result into a significant change.  

 

This experiment indicates that the catalyst species can participate in a reversible 

trans-esterification. Such trans-esterification can also rationalize the observed product 

inhibition during the catalytic Tishchenko coupling of aldehydes. Increase in [product] 

during the reaction time course eventually takes the catalyst away from the productive cycle 

and involves in a reversible trans-esterification. Similarly ToMMgOEt (5) reacts with 

CycCO2CH2Cyc ester to give partial conversion into ToMMgOCH2Cyc and CycCO2Et. In 

most catalysis involving metal alkoxides a common mechanism has been proposed that 

involves an aldehyde insertion into the metal alkoxide followed by β-H abstraction by 

another aldehyde molecule as shown in Fig.3. 
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Fig. 3 catalytic cycle commonly proposed for Tishchenko coupling of aldehydes. 

 

We propose a similar but slightly modified catalytic cycle as shown below for the overall 

Tishchenko coupling of PhCHO, which incorporates the reversible trans-esterification of the 

product ester. Insertion reaction between pre-catalyst 1 and PhCHO gives alkoxide A1. A 

reversible insertion of another molecule of PhCHO into the Mg-O bond provides the 

alkoxide A2 (transition state A”). Finally a third molecule of PhCHO abstracts a β-H from 

the alkoxide A2 following a six membered transition state (B”) to give the ester 

PhCO2CHMePh and alkoxide A3. Alkoxide A3 is the resting state of the catalyst, which then 

dimerizes two PhCHO molecules following insertion (A”) and subsequently β-H abstraction 

(B”) steps.  
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This aldehyde insertion into Mg-alkoxide mechanism is further supported by the fact that X-

ray quality single crystals of dimeric [(κ2-ToM)MgOiBu]2 were obtained from the reaction 

mixture of isobutyraldehyde (entry 17) catalysis.  

Conclusion. 

Thus we have established a new multi-purpose magnesium catalyst to perform several 

important organic transformations. We are currently looking into the mechanistic details of 

these reactions. 
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Experimental Data 
  
General Procedures. All reactions were performed under a dry argon atmosphere using 

standard Schlenk techniques or under a nitrogen atmosphere in a glovebox, unless otherwise 

indicated. Benzene, toluene, pentane, diethyl ether, and tetrahydrofuran were dried and 

deoxygenated using an IT PureSolv system. Benzene-d6 was heated to reflux over Na/K alloy 

and vacuum-transferred. ToMMgMe (1) was synthesized according to the literature procedure. 

Carbonyl and ester substrates were purchased from Sigma-Aldrich and stored under N2 

atmosphere inside glovebox. Liquid substrates were distilled over CaH2 and stored over 

molecular sieves prior use. HBpin, also purchased from Sigma-Aldrich, was stored at – 30°C 

inside the glovebox and used as it is. 1H, 13C{1H}, and 11B NMR spectra were collected on a 

Bruker AVII 600 or a DRX 400 spectrometer. 15N chemical shifts were determined by 1H-
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15N HMBC experiments on a Bruker AVII 600 spectrometer with a Bruker Z-gradient 

inverse TXI 1H/13C/15N 5mm cryoprobe; 15N chemical shifts were originally referenced to an 

external liquid NH3 standard and recalculated to the CH3NO2 chemical shift scale by adding -

381.9 ppm. Elemental analyses were performed using a Perkin-Elmer 2400 Series II CHN/S 

by the Iowa State Chemical Instrumentation Facility. X-ray diffraction data was collected on 

a Bruker APEX II diffractometer. 

 

ToMMgH2Bpin. To a 10 mL benzene solution of HBpin (1.3 mL, 8.959 mmol) 2 mL 

benzene solution of ToMMgMe (0.250 g, 0.593 mmol) was added drop wise with occasional 

stirring at ambient temperature and subsequently filtered. Evaporation of the volatile 

materials under reduced pressure resulted into a white solid, which was then washed with 

pentane (3 × 5 mL) and subsequently dried under vacuum to provide analytically pure 

ToMMgH2Bpin (0.248 g, 0.463 mmol, 78.1%) as white power. X-ray quality single crystals 

were grown from a slow pentane diffusion into a concentrated toluene solution of 

ToMMgH2Bpin at – 35 °C. 1H NMR (600 MHz, benzene-d6): δ 1.15 (s, 18 H, 

CNCMe2CH2O), 1.42 (br, s, 12 H, Me2COBOCMe2) 3.38 (s, 6 H, CNCMe2CH2O), 4.19 (br, 

q, 2 H, MgH2B), 7.36 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 7.54 (t, 3JHH = 7.2 Hz, 2 H, meta-

C6H5), 8.26 (d, 3JHH = 7.8 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 HMz, benzene-d6): δ 

25.27 (Me2COBOCMe2), 28.38 (CNCMe2CH2O), 66.40 (CNCMe2CH2O), 80.94 

(CNCMe2CH2O), 83.48 (Me2COBOCMe2), 126.24 (para-C6H5), 127.16 (meta-C6H5), 136.47 

(ortho-C6H5), 142.41 (br, ipso-C6H5), 192.49 (br, CNCMe2CH2O). 11B NMR (128 MHz, 

benzene-d6): δ -18.4 (B of ToM), 3.4 (t, 1JBH = 93.5 Hz MgH2B). 15N{1H} NMR: δ -161.1. IR 

(KBr, cm-1): 3041 (w), 2971 (s), 2930 (m), 2309 (br, νBH), 1581 (s, νCN), 1463 (br, m), 1367 
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(m), 1272 (s), 1195 (s), 1157 (s), 1034 (w), 961 (s), 894 (w), 850 (w), 813 (w), 750 (w), 706 

(m), 679 (m), 661 (w), 638 (m), 580 (w). Anal. Calcd. for C27H43B2N3O5Mg: C, 60.55; H, 

8.09; N, 7.85. Found: C, 60.18; H, 7.89; N, 7.77. Mp: 50-60 °C (dec.) 

 

ToMMgOCMePh2. A 10 mL benzene solution of ToMMgMe (0.310 g, 0.735 mmol) and 

benzophenone (0.134 g, 0.735 mmol) was stirred for 1 h at ambient temperature. Volatiles 

were then removed under reduced pressure to obtain a white solid. Washing the white solid 

with pentane (3 × 5 mL) and further drying under vacuum afforded 0.362 g of analytically 

pure ToMMgOCMePh2 (0.668 mmol, 90.9%). X-ray quality singe crystals were obtained 

from a concentrated toluene solution of ToMMgOCMePh2 at −35 °C. 1H NMR (600 MHz, 

benzene-d6): δ 0.99 (s, 18 H, CNCMe2CH2O), 2.13 (s, 3 H, MgOCMePh2) 3.38 (s, 6 H, 

CNCMe2CH2O), 7.12 (t, 3JHH = 7.2 Hz, 2 H, para- MgOCMe(C6H5)2), 7.28 (t, 3JHH = 7.2 Hz, 

2 H, meta- MgOCMe(C6H5)2), 7.35 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 7.53 (t, 3JHH = 7.2 Hz, 

2 H, meta-C6H5), 7.84 (d, 3JHH = 7.2 Hz, 2 H, ortho- MgOCMe(C6H5)2), 8.27 (d, 3JHH = 7.2 

Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 HMz, benzene-d6): δ 28.33 (CNCMe2CH2O), 

36.41 (MgOCMe(C6H5)2), 65.65 (CNCMe2CH2O), 75.74 (MgOCMePh2), 80.58 

(CNCMe2CH2O), 125.79 (para- MgOCMe(C6H5)2), 126.32 (para-C6H5), 127.11 (ortho- 

MgOCMe(C6H5)2), 127.22 (meta-C6H5), 128.11 (meta- MgOCMe(C6H5)2), 136.43 (ortho-

C6H5), 141.70 (br, ipso-C6H5), 156.86 (ipso- MgOCMe(C6H5)2), 191.16 (br, CNCMe2CH2O).  

11B NMR (128 MHz, benzene-d6): δ −18.3. 15N{1H} NMR: δ −158.1. IR (KBr, cm-1): 3078 

(m), 3056 (m), 2967 (s), 2925 (m), 2869 (m), 2275 (w), 2122 (w), 1953 (w), 1889 (w), 1821 

(w), 1586 (s, νCN), 1486 (m), 1462 (m), 1446 (m), 1387 (m), 1367 (m), 1355 (m), 1275 (s), 

1195 (s), 1162 (s), 1067 (m), 1027 (m), 961 (s), 896 (w), 843 (m), 820 (m), 781 (m), 749 (m), 
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706 (s), 678 (m), 660 (m), 643 (m), 621 (m), 575 (m), 549 (m). Anal. Calcd. for 

C23H34BN3O4Mg: C, 61.16; H, 7.59; N, 9.30. Found: C, 60.88; H, 7.79; N, 9.45. Mp: 168-

172 °C 

 

ToMMgOEt. To a 10 mL benzene solution of ToMMgMe (0.387 g, 0.918 mmol), 5.5 

microliter of EtOH (0.942 mmol) was added and subsequently stirred for 1 h. Evaporation of 

the volatile materials under reduced pressure resulted into a white solid, which was then 

washed with pentane (3 × 5 mL) and subsequently dried under vacuum to provide 0.350 g 

(0.775 mmol, 84.4 %) of analytically pure ToMMgOEt as a white power. X-ray quality single 

crystals were obtained in NMR tube when this reaction was carried out in NMR-scale at 

ambient temperature. 1H NMR (600 MHz, benzene-d6): δ 1.21 (s, 18 H, CNCMe2CH2O), 

1.27 (t, 3JHH = 7.2 Hz, 3 H, MgOCH2CH3), 3.54 (s, 6 H, CNCMe2CH2O), 3.81 (q, 3JHH = 7.2 

Hz, 2 H, MgOCH2CH3), 7.25 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 7.46 (t, 3JHH = 7.2 Hz, 2 H, 

meta-C6H5), 8.08 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} NMR (175 HMz, benzene-

d6): δ 22.14 (MgOCH2CH3), 29.06 (CNCMe2CH2O), 58.54 (MgOCH2CH3), 66.71 

(CNCMe2CH2O), 78.61 (CNCMe2CH2O), 125.98 (para-C6H5), 127.70 (meta-C6H5), 134.56 

(ortho-C6H5), 147.12 (br, ipso-C6H5), 187.94 (br, CNCMe2CH2O). 11B NMR (128 MHz, 

benzene-d6): δ −17.4. 15N{1H} NMR: δ −157.1. IR (KBr, cm-1): 3038 (w), 2966 (s), 2931 (m), 

2868 (m), 1628 (m, νCN), 1594 (s, νCN), 1568 (s, νCN), 1463 (m), 1431 (w), 1386 (m), 1369 

(m), 1281 (m), 1198 (s), 1154 (s), 1118 (s), 1066 (m), 1003 (s), 969 (s), 930 (w), 896 (m), 

880 (w), 842 (w), 810 (w), 764 (w), 753 (w), 713 (m), 702 (m), 655 (m), 638 (w), 618 (w), 

595 (w), 560 (m). Anal. Calcd. for C23H34BN3O4Mg: C, 61.16; H, 7.59; N, 9.30. Found: C, 

60.88; H, 7.79; N, 9.45. Mp: 225-230 °C (dec.) 
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ToMMgOEt(HBpin). This species has been synthesized in situ by adding a mixture of 40 

microliters of EtOAc (0.407 mmol) and 120 microliters of HBpin (0.827 mmol) to a toluene-

d8 solution of ToMMgMe (0.016 g, 0.038 mmol), precooled at – 78 °C and subsequently 

warming up the solution mixture to – 10°C. Spectroscopic characterizations were carried out 

at 267 K. 1H NMR (400 MHz, toluene-d8): δ 1.14 (s, 18 H, CNCMe2CH2O), 1.33 (s, 6 H, 

Me2COBOCMe2), 1.36 (s, 6 H, Me2COBOCMe2), 1.46 (t, 3JHH = 7.2 Hz, 3 H, MgOCH2CH3), 

3.39 (s, 6 H, CNCMe2CH2O), 3.80 (q, 3JHH = 7.2 Hz, 2 H, MgOCH2CH3), 7.29 (t, 3JHH = 7.2 

Hz, 1 H, para-C6H5), 7.45 (t, 3JHH = 7.2 Hz, 2 H, meta-C6H5), 8.09 (d, 3JHH = 7.2 Hz, 2 H, 

ortho-C6H5). 13C{1H} NMR (175 HMz, toluene-d8): δ 17.48 (MgOCH2CH3), 25.05 

(Me2COBOCMe2), 26.26 (Me2COBOCMe2), 27.64 (CNCMe2CH2O), 58.87 (MgOCH2CH3), 

65.96 (CNCMe2CH2O), 79.40 (CNCMe2CH2O), 79.55 (Me2COBOCMe2), 125.14 (para-

C6H5), 126.22 (meta-C6H5), 135.39 (ortho-C6H5), 143.47 (br, ipso-C6H5), 190.73 (br, 

CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ −18.2 (B of ToM), 7.2 (br, HBpin). 

15N{1H} NMR: δ −158.8. 

 

ToMZnOCH(C6F5)OCH2C6F5. A 5 mL toluene mixture containing 0.360 g (0.802 mmol) of 

ToMZnH and 0.2 mL (1.620 mmol) of C6F5CHO was kept at −30 °C for two weeks. X-ray 

quality single crystals of ToMZnOCH(C6F5)OCH2C6F5 were deposited in the mean time 

which were then isolated by decanting the supernatant solution. Further drying the crystals 

under vacuum provided 0.205 g (0.244 mmol) of analytically pure 

ToMZnOCH(C6F5)OCH2C6F5. 1H NMR (600 MHz, toluene-d8): δ 1.00 (s, 9 H, 

CNCMe2CH2O), 1.06 (s, 9 H, CNCMe2CH2O), 3.44 (s, 6 H, CNCMe2CH2O), 4.26 (d, 1JHH = 
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10.8 Hz, 1 H, ZnOCH2C6F5(C6F5CHO)), 4.51 (d, 1JHH = 10.8 Hz, 1 H, ZnOCH2C6F5(C6F-

5CHO)), 6.76 (s, 1 H, ZnOCH2C6F5(C6F5CHO)), 7.29 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 

7.44 (t, 3JHH = 7.2 Hz, 2 H, meta-C6H5), 8.11 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 13C{1H} 

NMR (175 MHz, benzene-d6): δ 27.36 (CNCMe2CH2O), 27.77 (CNCMe2CH2O), 54.14 

(ZnOCH2C6F5(C6F5CHO)), 65.58 (CNCMe2CH2O), 81.13 (CNCMe2CH2O), 98.62 

((ZnOCH2C6F5(C6F5CHO), 112.75 (C6F5), 120.24 (C6F5), 126.55 (para-C6H5), 127.36 (meta-

C6H5), 136.27 (ortho-C6H5), 137.28 (C6F5), 138.70 (C6F5), 140.20 (C6F5), 140.45 (br, ipso-

C6H5), 140.87 (C6F5), 141.60 (C6F5), 142.28 (C6F5), 145.48 (C6F5), 146.90 (C6F5), 190.84 (br, 

CNCMe2CH2O). 11B NMR (128 MHz, benzene-d6): δ −18.3. 15N{1H} NMR: δ −160.6. 19F 

NMR (benzene-d6, 376 MHz): δ – 143.24 (C6F5), –145.18 (C6F5), −155.20 (C6F5), –157.25 

(C6F5), -163.13 (C6F5), –163.49 (C6F5). IR (KBr, cm-1): 3080 (w), 3049 (w), 2973 (m), 2933 

(m), 2905 (m), 1657 (w), 1650 (w), 1595 (s, νCN), 1522 (s), 1504 (s), 1464 (m), 1432 (w), 

1390 (m), 1371 (m), 1356 (m), 1339 (w), 1298 (m), 1278 (m), 1253 (w), 1198 (s), 1168 (m), 

1133 (m), 1110 (m), 1055 (m), 1038 (m), 1000 (s), 955 (s), 937 (s), 922 (m), 820 (m), 803 

(m), 746 (m), 706 (m). Anal. Calcd. for C35H32BN3O5F10Zn: C, 50.00; H, 3.84; N, 5.00. 

Found: C, 50.40; H, 3.99; N, 4.94. Mp: 165-170 °C (dec.) 

 

ToMMgOCH2[(o-COCH3)C6H4]. A 10 mL toluene solution of mixture of ToMMgMe (0.315 

g, 0.747 mmol) and phthalide (0.332 g, 2.241 mmol) was stirred for 10 minutes and 

subsequently stored in −30 °C freezer for 12 h. A yellowish white solid precipitated over 

time, which was then isolated via decantation of the top solution. The solid was washed with 

pentane (3 × 5 mL) and further dried under vacuum to provide 0.253 g (0.455 mmol, 60.9 %) 

of analytically pure ToMMgOCH2[(o-COCH3)C6H4] as a yellowish white power. 1H NMR 
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(600 MHz, toluene-d8): δ 1.07 (s, 18 H, CNCMe2CH2O), 1.93 (s, 3 H, MgOCH2[(o-

COCH3)C6H4]), 3.45 (s, 6 H, CNCMe2CH2O), 4.82 (s, 2 H, MgOCH2([(o-C)CH3)C6H4]), 

6.86 (d, 3JHH = 7.2 Hz, 1 H, MgOCH2Ar’), 7.07 (t, 3JHH = 7.2 Hz, 1 H, MgOCH2Ar’), 7.13 (t, 

3JHH = 7.2 Hz, 1 H, MgOCH2Ar’), 7.36 (t, 3JHH = 7.2 Hz, 1 H, para-C6H5), 7.54 (t, 3JHH = 7.2 

Hz, 2 H, meta-C6H5), 7.59 (d, 3JHH = 7.2 Hz, 1 H, MgOCH2Ar’), 8.33 (d, 3JHH = 7.2 Hz, 2 H, 

ortho-C6H5). 13C{1H} NMR (175 MHz, benzene-d6): δ 27.45 (CNCMe2CH2O), 31.31 

(MgOCH2[(o-COCH3)C6H4]), 65.55 (CNCMe2CH2O), 66.41 ((MgOCH2[(o-COCH3)C6H4]), 

79.36 (CNCMe2CH2O), 113.25 (MgOAr’), 121.11 (MgOAr’), 122.77 (MgOCH2[(o-

COCH3)C6H4]), 125.28 (MgOAr’), 126.66 (para-C6H5), 127.71 (meta-C6H5), 128.33 

(MgOAr’), 130.90 (MgOAr’), 136.44 (ortho-C6H5), 141.66 (br, ipso-C6H5), 162.56 

(MgOCH2Ar’), 191.56 (br, CNCMe2CH2O). 11B NMR (128 MHz, toluene-d8): δ −17.1. 

15N{1H} NMR: δ −158.5. IR (KBr, cm-1): 2969 (m), 2928 (m), 2911 (m), 2886 (m), 2862 (m), 

2832 (w), 1765 (m), 1747 (m), 1719 (w), 1662 (s), 1618 (s, νCN), 1596 (s, νCN), 1584 (s, νCN), 

1490 (s), 1462 (s), 1431 (m), 1381 (w), 1365 (s), 1314 (w), 1296 (m), 1275 (m), 1200 (s), 

1158 (m), 1143 (m), 1088 (w), 1069 (w), 1024 (m), 1000 (w), 976 (w), 908 (m), 893 (s), 880 

(w), 842 (s), 808 (w), 769 (s), 709 (s). Anal. Calcd. for C30H38BN3O5Mg: C, 64.83; H, 6.89; 

N, 7.56. Found: C, 65.15; H, 6.44; N, 7.48. Mp: 176-182 °C (dec.) 

 

ToMMgO[(o-CH2CH2COCH3)C6H4]. A 10 mL toluene solution of mixture of ToMMgMe 

(0.350 g, 0.830 mmol) and dihydrocoumarin (0.195 g, 1.316 mmol) was stirred for 10 

minutes. Immediate removal of the volatiles under reduced pressure provided a white solid. 

The solid was then washed with pentane (3 × 5 mL) and further dried under vacuum to afford 

0.338 g (0.593 mmol, 71.4 %) of analytically pure ToMMgO[(o-CH2CH2COCH3)C6H4] as a 
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white power. 1H NMR (600 MHz, toluene-d8): δ 1.11 (s, 18 H, CNCMe2CH2O), 1.38 (s, 3 H, 

MgO[(o-CH2CH2COCH3)C6H4]), 2.40 (t, 3JHH = 6 Hz, 2 H, MgO[(o-CH2CH2COCH3)C6H4]), 

2.86 (t, 3JHH = 6 Hz, 2 H, MgO[(o-CH2CH2COCH3)C6H4]), 3.49 (s, 6 H, CNCMe2CH2O), 

6.79 (t, 3JHH = 7.2 Hz, 1 H, MgOAr’), 7.04 (d, 3JHH = 7.2 Hz, 1 H, MgOAr’), 7.11 (d, 3JHH = 

7.2 Hz, 1 H, MgOAr’), 7.30 (t, 3JHH = 7.2 Hz, 1 H, MgOAr’), 7.38 (t, 3JHH = 7.2 Hz, 1 H, 

para-C6H5), 7.58 (t, 3JHH = 7.2 Hz, 2 H, meta-C6H5), 8.41 (d, 3JHH = 7.2 Hz, 2 H, ortho-C6H5). 

13C{1H} NMR (175 MHz, toluene-d8): δ 23.52 (MgO[(o-CH2CH2COCH3)C6H4]), 27.80 

(CNCMe2CH2O), 30.60 (MgO[(o-CH2CH2COCH3)C6H4]), 46.71 (MgO[(o-

CH2CH2COCH3)C6H4]), 65.28 (CNCMe2CH2O), 79.98 (CNCMe2CH2O), 114.21 (MgOAr’), 

120.65 (MgOAr’), 126.16 (MgOAr’), 126.94 (para-C6H5), 127.72 (meta-C6H5), 128.11 

(MgOAr’), 129.97 (MgOAr’), 136.25 (ortho-C6H5), 141.30 (br, ipso-C6H5), 163.81 

(MgOAr’), 191.07 (br, CNCMe2CH2O), 214.26 (MgO[(o-CH2CH2COCH3)C6H4]). 11B NMR 

(128 MHz, benzene-d6): δ −18.1. 15N{1H} NMR: δ −157.8. IR (KBr, cm-1): 3070 (w), 3046 

(m), 2966 (s), 2933 (m), 2884 (m), 1773 (w), 1750 (w), 1709 (m), 1651 (w), 1590 (s, νCN), 

1573 (s, νCN), 1489 (s), 1458 (s), 1433 (m), 1371 (m), 1351 (m), 1332 (w), 1312 (w), 1272 

(s), 1250 (s), 1231 (w), 1195 (s), 1140 (s), 1107 (m), 1075 (m), 1003 (s), 967 (s), 931 (w), 

914 (m), 893 (m), 880 (w), 820 (m), 833 (m), 760 (m), 709 (m). Anal. Calcd. for 

C31H40BN3O5Mg: C, 65.35; H, 7.08; N, 7.37. Found: C, 64.99; H, 6.74; N, 7.44. Mp: 125-

132 °C (dec.) 

 

General description of gram-scale hydrobobration of carbonyls.  A mixture of 1.5 mL of 

acetophenone and 1.9 mL of HBpin was added to a 10 mL benzene solution of 5 mg of 1. 

The reaction mixture was then taken into a Teflon-sealable storage flask and stirred at 60 °C 
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for 6 h. The reaction was quenched with 1 M aqueous NaOH solution and the reduced 

alcohol was extracted with diethyl ether.  

General description of gram-scale Tishchenko coupling of aldehydes.  A mixture of 1.5 

mL of acetophenone and 1.9 mL of HBpin was added to a 10 mL benzene solution of 5 mg 

of 1. The reaction mixture was then taken into a Teflon-sealable storage flask and stirred at 

60 °C for 6 h. The reaction was quenched with 1 M aqueous NaOH solution and the reduced 

alcohol was extracted with diethyl ether. 

General description of gram-scale hydrobobration of esters.  A mixture of 1.5 mL of 

acetophenone and 1.9 mL of HBpin was added to a 10 mL benzene solution of 5 mg of 1. 

The reaction mixture was then taken into a Teflon-sealable storage flask and stirred at 60 °C 

for 6 h. The reaction was quenched with 1 M aqueous NaOH solution and the reduced 

alcohol was extracted with diethyl ether. 

General Procedure for kinetic measurements. All kinetics measurements were conducted 

by monitoring the reaction with 1H NMR spectroscopy using a Bruker DRX-400 

spectrometer. The NMR probe was pre-set to desired temperature before each set of 

experiments and calibrated using 100% CD3OD (for temperatures below 300K). The 

substrate to product conversion was monitored by taking a single-scan 1H NMR spectrum at 

preset intervals. Concentration of the ToMMgMe pre-catalyst was determined prior the 

addition of substrate mixture in each case and the same concentration value is used as the 

[Mg]tot during plotting. Change in [HBpin] was not monitored with time as the corresponding 

resonance partially overlaps with that of EtOBpin and EtOAc. Therefore all the kinetic 

experiments were carried out under the pseudo 1st order condition with respect to [HBpin] 
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and the initial concentration values ([HBpin]int) were used in plotting.  Concentration of 

every species of interest was determined by comparison of corresponding integrated 

resonances to a known concentration of tetrakis(trimethylsilyl)silane dissolved in toluene-d8. 

 

General description of 1H NMR kinetic experiments for the catalytic hydroboration of 

EtOAc using HBpin and ToMMgMe (1) as the pre-catalyst. A 10 mL of toluene-d8 stock 

solution containing known concentrations of tetrakis(trimethylsilyl)sialne (6 mM, as an 

internal standard) was prepared. The samples were prepared by adding a measured volume 

(0.64 mL) of this solution to pre-weighed ToMMgMe (1) giving [Mg]tot ranging from 6.6 mM 

to 25.2 mM. Individual sample was placed in a septa-capped NMR tube and cooled to 

−78 °C. A substrate mixture containing 0.22 mL of EtOAc and 0.96 mL of HBpin was 

prepared and 120 microliters of this mixture was added to the sample through the septa using 

a microliter syringe. The hole was sealed with silicone grease. The sample was placed in the 

NMR spectrometer probe, preset and calibrated to 287 K. Single-scan spectra were acquired 

automatically at preset time intervals. The concentrations of EtOAc and EtOBpin were 

determined by comparison of corresponding integrated resonances to the known 

concentration of the internal standard (TMSS). The reactions were followed over three half-

lives of the time course. 

 

Determination of rate dependence on [EtOAc] under the condition of [EtOAc]int = 0.30 

M and [HBpin]int = 0.85 M. Plots of [EtOAc] vs. time follow a half-order decay. The half-

order rate constants (kobs) for each [Mg]tot were obtained by a nonweighted linear least-

squares fit of the data to the integrated half-order rate law: 
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Determination of rate dependence on [HBpin] under the condition of [EtOAc]int = 0.30 

M and [HBpin]int = 0.85 M. kobs values are equivalent within error at [HBpin] ranging from 

0.85 M to 2.4 M while keeping [Mg]tot indifferent. This shows a zero-order [HBpin] 

dependence on the overall rate law.  

Determination of rate dependence on [Mg]tot under the condition of [EtOAc]int = 0.30 M 

and [HBpin]int = 0.85 M. An observed linear correlation between [Mg]tot and the 

corresponding kobs indicates a first-order [Mg]tot dependence on overall catalytic rate law. 

The overall three-half order rate constant (k’) value was obtained from the nonweighted 

linear least-square fit on the plot of kobs vs. [Mg]tot. 

 

Thus the rate law for the overall catalysis is written as follows: 

- d[EtOAc]/dt = k’ [EtOAc]1/2 [Mg]tot
1 [HBpin]0 

 

 

 

 

 

 

 

 

 

2 ([EtOAc]01/2 - [EtOAc]t1/2)  = kobs t
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Chapter 9. Conclusion 

The development of zinc and magnesium catalysts remains an important area of research 

within the field of organometallic chemistry. The non-toxic and environmentally benign 

nature of these metals makes them superior than more harmful metals. Moreover, the cheap 

abundance compared to other rare metals makes them highly desirable for practical purposes. 

This work also highlights the importance of the choice of ancillary ligands in order to 

control, manipulate and fine-tune the reactivity and selectivity of catalyst systems. We have 

shown that the unique steric properties of tris(oxazolinyl)borate ligands enable isolation of 

several reactive intermediates including alkyl, silyl, alkoxide, amide, hydride, alkyl peroxides 

etc. that are important in the context of catalaysis and mechanistic explorations. Thus the 

remarkable thermal stability of ToMZnOOR (R = Et, n-Pr, i-Pr, t-Bu) compounds (> 120 °C) 

is one of the main-highlights of this thesis. Despite the robustness, these compounds are not 

completely inert and demonstrate several interesting reactivity. Furthermore, lack of redox 

activity of zinc and magnesium makes these studies less complicated. These studies need to 

be continued along the line of catalysis and mechanistic studies. Enantioselective 

transformations could also be accomplished using the chiral tris(oxazoilyl)phenylborate 

ligands, which are accessible from enantio-pure amino acids. Products resulted from 

ToMMgMe mediated ester hydroboration are completely different from the hydroboration of 

amides, under similar catalytic condition. Esters undergo C−O bond cleavage to produce 

alkoxy boranes, whereas, amides undergo C=O bond reduction resulting amines and B−O−B 

linkage. Such reactivity difference is quite intriguing and requires additional mechanistic 

study in details. 
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